ﻻ يوجد ملخص باللغة العربية
The asymptotic behaviour of the commonly used bootstrap percentile confidence interval is investigated when the parameters are subject to linear inequality constraints. We concentrate on the important one- and two-sample problems with data generated from general parametric distributions in the natural exponential family. The focus of this paper is on quantifying the coverage probabilities of the parametric bootstrap percentile confidence intervals, in particular their limiting behaviour near boundaries. We propose a local asymptotic framework to study this subtle coverage behaviour. Under this framework, we discover that when the true parameters are on, or close to, the restriction boundary, the asymptotic coverage probabilities can always exceed the nominal level in the one-sample case; however, they can be, remarkably, both under and over the nominal level in the two-sample case. Using illustrative examples, we show that the results provide theoretical justification and guidance on applying the bootstrap percentile method to constrained inference problems.
We compare the following two sources of poor coverage of post-model-selection confidence intervals: the preliminary data-based model selection sometimes chooses the wrong model and the data used to choose the model is re-used for the construction of the confidence interval.
Recently, Kabaila and Wijethunga assessed the performance of a confidence interval centred on a bootstrap smoothed estimator, with width proportional to an estimator of Efrons delta method approximation to the standard deviation of this estimator. Th
It can be argued that optimal prediction should take into account all available data. Therefore, to evaluate a prediction intervals performance one should employ conditional coverage probability, conditioning on all available observations. Focusing o
We consider a linear regression model, with the parameter of interest a specified linear combination of the regression parameter vector. We suppose that, as a first step, a data-based model selection (e.g. by preliminary hypothesis tests or minimizin
Bootstrap smoothed (bagged) parameter estimators have been proposed as an improvement on estimators found after preliminary data-based model selection. The key result of Efron (2014) is a very convenient and widely applicable formula for a delta meth