ترغب بنشر مسار تعليمي؟ اضغط هنا

Necessary and sufficient conditions for asymptotically optimal linear prediction of random fields on compact metric spaces

147   0   0.0 ( 0 )
 نشر من قبل Kristin Kirchner
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Optimal linear prediction (also known as kriging) of a random field ${Z(x)}_{xinmathcal{X}}$ indexed by a compact metric space $(mathcal{X},d_{mathcal{X}})$ can be obtained if the mean value function $mcolonmathcal{X}tomathbb{R}$ and the covariance function $varrhocolonmathcal{X}timesmathcal{X}tomathbb{R}$ of $Z$ are known. We consider the problem of predicting the value of $Z(x^*)$ at some location $x^*inmathcal{X}$ based on observations at locations ${x_j}_{j=1}^n$ which accumulate at $x^*$ as $ntoinfty$ (or, more generally, predicting $varphi(Z)$ based on ${varphi_j(Z)}_{j=1}^n$ for linear functionals $varphi, varphi_1, ldots, varphi_n$). Our main result characterizes the asymptotic performance of linear predictors (as $n$ increases) based on an incorrect second order structure $(tilde{m},tilde{varrho})$, without any restrictive assumptions on $varrho, tilde{varrho}$ such as stationarity. We, for the first time, provide necessary and sufficient conditions on $(tilde{m},tilde{varrho})$ for asymptotic optimality of the corresponding linear predictor holding uniformly with respect to $varphi$. These general results are illustrated by weakly stationary random fields on $mathcal{X}subsetmathbb{R}^d$ with Matern or periodic covariance functions, and on the sphere $mathcal{X}=mathbb{S}^2$ for the case of two isotropic covariance functions.



قيم البحث

اقرأ أيضاً

Unmeasured confounding is a threat to causal inference and individualized decision making. Similar to Cui and Tchetgen Tchetgen (2020); Qiu et al. (2020); Han (2020a), we consider the problem of identification of optimal individualized treatment regi mes with a valid instrumental variable. Han (2020a) provided an alternative identifying condition of optimal treatment regimes using the conditional Wald estimand of Cui and Tchetgen Tchetgen (2020); Qiu et al. (2020) when treatment assignment is subject to endogeneity and a valid binary instrumental variable is available. In this note, we provide a necessary and sufficient condition for identification of optimal treatment regimes using the conditional Wald estimand. Our novel condition is necessarily implied by those of Cui and Tchetgen Tchetgen (2020); Qiu et al. (2020); Han (2020a) and may continue to hold in a variety of potential settings not covered by prior results.
We consider Gaussian measures $mu, tilde{mu}$ on a separable Hilbert space, with fractional-order covariance operators $A^{-2beta}$ resp. $tilde{A}^{-2tilde{beta}}$, and derive necessary and sufficient conditions on $A, tilde{A}$ and $beta, tilde{bet a} > 0$ for I. equivalence of the measures $mu$ and $tilde{mu}$, and II. uniform asymptotic optimality of linear predictions for $mu$ based on the misspecified measure $tilde{mu}$. These results hold, e.g., for Gaussian processes on compact metric spaces. As an important special case, we consider the class of generalized Whittle-Matern Gaussian random fields, where $A$ and $tilde{A}$ are elliptic second-order differential operators, formulated on a bounded Euclidean domain $mathcal{D}subsetmathbb{R}^d$ and augmented with homogeneous Dirichlet boundary conditions. Our outcomes explain why the predictive performances of stationary and non-stationary models in spatial statistics often are comparable, and provide a crucial first step in deriving consistency results for parameter estimation of generalized Whittle-Matern fields.
In this contribution we are interested in proving that a given observation-driven model is identifiable. In the case of a GARCH(p, q) model, a simple sufficient condition has been established in [1] for showing the consistency of the quasi-maximum li kelihood estimator. It turns out that this condition applies for a much larger class of observation-driven models, that we call the class of linearly observation-driven models. This class includes standard integer valued observation-driven time series, such as the log-linear Poisson GARCH or the NBIN-GARCH models.
Multidimensional scaling (MDS) is a popular technique for mapping a finite metric space into a low-dimensional Euclidean space in a way that best preserves pairwise distances. We overview the theory of classical MDS, along with its optimality propert ies and goodness of fit. Further, we present a notion of MDS on infinite metric measure spaces that generalizes these optimality properties. As a consequence we can study the MDS embeddings of the geodesic circle $S^1$ into $mathbb{R}^m$ for all $m$, and ask questions about the MDS embeddings of the geodesic $n$-spheres $S^n$ into $mathbb{R}^m$. Finally, we address questions on convergence of MDS. For instance, if a sequence of metric measure spaces converges to a fixed metric measure space $X$, then in what sense do the MDS embeddings of these spaces converge to the MDS embedding of $X$?
Inference on vertex-aligned graphs is of wide theoretical and practical importance.There are, however, few flexible and tractable statistical models for correlated graphs, and even fewer comprehensive approaches to parametric inference on data arisin g from such graphs. In this paper, we consider the correlated Bernoulli random graph model (allowing different Bernoulli coefficients and edge correlations for different pairs of vertices), and we introduce a new variance-reducing technique -- called emph{balancing} -- that can refine estimators for model parameters. Specifically, we construct a disagreement statistic and show that it is complete and sufficient; balancing can be interpreted as Rao-Blackwellization with this disagreement statistic. We show that for unbiased estimators of functions of model parameters, balancing generates uniformly minimum variance unbiased estimators (UMVUEs). However, even when unbiased estimators for model parameters do {em not} exist -- which, as we prove, is the case with both the heterogeneity correlation and the total correlation parameters -- balancing is still useful, and lowers mean squared error. In particular, we demonstrate how balancing can improve the efficiency of the alignment strength estimator for the total correlation, a parameter that plays a critical role in graph matchability and graph matching runtime complexity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا