ﻻ يوجد ملخص باللغة العربية
Multidimensional scaling (MDS) is a popular technique for mapping a finite metric space into a low-dimensional Euclidean space in a way that best preserves pairwise distances. We overview the theory of classical MDS, along with its optimality properties and goodness of fit. Further, we present a notion of MDS on infinite metric measure spaces that generalizes these optimality properties. As a consequence we can study the MDS embeddings of the geodesic circle $S^1$ into $mathbb{R}^m$ for all $m$, and ask questions about the MDS embeddings of the geodesic $n$-spheres $S^n$ into $mathbb{R}^m$. Finally, we address questions on convergence of MDS. For instance, if a sequence of metric measure spaces converges to a fixed metric measure space $X$, then in what sense do the MDS embeddings of these spaces converge to the MDS embedding of $X$?
Multidimensional scaling (MDS) is a popular technique for mapping a finite metric space into a low-dimensional Euclidean space in a way that best preserves pairwise distances. We study a notion of MDS on infinite metric measure spaces, along with its
In this note we give several characterisations of weights for two-weight Hardy inequalities to hold on general metric measure spaces possessing polar decompositions. Since there may be no differentiable structure on such spaces, the inequalities are
Optimal linear prediction (also known as kriging) of a random field ${Z(x)}_{xinmathcal{X}}$ indexed by a compact metric space $(mathcal{X},d_{mathcal{X}})$ can be obtained if the mean value function $mcolonmathcal{X}tomathbb{R}$ and the covariance f
Multidimensional Scaling (MDS) is a classical technique for embedding data in low dimensions, still in widespread use today. Originally introduced in the 1950s, MDS was not designed with high-dimensional data in mind; while it remains popular with da
We relate the existence of many infinite geodesics on Alexandrov spaces to a statement about the average growth of volumes of balls. We deduce that the geodesic flow exists and preserves the Liouville measure in several important cases. The developed