ﻻ يوجد ملخص باللغة العربية
The edges of ionized (HII) regions are important sites for the formation of (high-mass) stars. Indeed, at least 30% of the galactic high mass star formation is observed there. The radiative and compressive impact of the HII region could induce the star formation at the border following different mechanisms such as the Collect & Collapse (C&C) or the Radiation Driven Implosion (RDI) models and change their properties. We study the properties of two zones located in the Photo Dissociation Region (PDR) of the Galactic HII region RCW120 and discussed them as a function of the physical conditions and young star contents found in both clumps. Using the APEX telescope, we mapped two regions of size 1.5$times$1.5 toward the most massive clump of RCW120 hosting young massive sources and toward a clump showing a protrusion inside the HII region and hosting more evolved low-mass sources. The $^{12}$CO($J=3-2$), $^{13}$CO($J=3-2$) and C$^{18}$O($J=3-2$) lines are used to derive the properties and dynamics of these clumps. We discuss their relation with the hosted star-formation. The increase of velocity dispersion and $T_{ex}$ are found toward the center of the maps, where star-formation is observed with Herschel. Furthermore, both regions show supersonic Mach number. No strong evidences have been found concerning the impact of far ultraviolet (FUV) radiation on C$^{18}$O photodissociation. The fragmentation time needed for the C&C to be at work is equivalent to the dynamical age of RCW120 and the properties of region B are in agreement with bright-rimmed clouds. It strengthens the fact that, together with evidences of compression, C&C might be at work at the edges of RCW120. Additionally, the clump located at the eastern part of the PDR is a good candidate of pre-existing clump where star-formation may be induced by the RDI mechanism.
We use the Mopra radio telescope to test for expansion of the molecular gas associated with the bubble HII region RCW120. A ring, or bubble, morphology is common for Galactic HII regions, but the three-dimensional geometry of such objects is still un
The expansion of HII regions can trigger the formation of stars. An overdensity of young stellar objects (YSOs) is observed at the edges of HII regions but the mechanisms that give rise to this phenomenon are not clearly identified. Moreover, it is d
We observed the CO(3-2) emission of the emission-line regions HubbleI, HubbleV, HubbleX, Holmberg 18, and the stellar emission-line object S28 in NGC6822 with the ESO Atacama Pathfinder Experiment (APEX) 12m telescope as part of its science verificat
Context. Observations of molecular gas have played a key role in developing the current understanding of the late stages of stellar evolution. Aims. The survey Planetary nebulae AND their cO Reservoir with APEX (PANDORA) was designed to study the cir
Context : Highly-collimated outflows are believed to be the earliest stage in outflow evolution, so their study is essential for understanding the processes driving outflows. The BHR71 Bok globule is known to harbour such a highly-collimated outflow,