ترغب بنشر مسار تعليمي؟ اضغط هنا

Star formation towards the Galactic HII region RCW120

69   0   0.0 ( 0 )
 نشر من قبل Miguel Figueira
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The expansion of HII regions can trigger the formation of stars. An overdensity of young stellar objects (YSOs) is observed at the edges of HII regions but the mechanisms that give rise to this phenomenon are not clearly identified. Moreover, it is difficult to establish a causal link between HII-region expansion and the star formation observed at the edges of these regions. A clear age gradient observed in the spatial distribution of young sources in the surrounding might be a strong argument in favor of triggering. We have observed the Galactic HII region RCW120 with herschel PACS and SPIRE photometers at 70, 100, 160, 250, 350 and 500$mu$m. We produced temperature and H$_2$ column density maps and use the getsources algorithm to detect compact sources and measure their fluxes at herschel wavelengths. We have complemented these fluxes with existing infrared data. Fitting their spectral energy distributions (SEDs) with a modified blackbody model, we derived their envelope dust temperature and envelope mass. We computed their bolometric luminosities and discuss their evolutionary stages. The herschel data, with their unique sampling of the far infrared domain, have allowed us to characterize the properties of compact sources observed towards RCW120 for the first time. We have also been able to determine the envelope temperature, envelope mass and evolutionary stage of these sources. Using these properties we have shown that the density of the condensations that host star formation is a key parameter of the star-formation history, irrespective of their projected distance to the ionizing stars.

قيم البحث

اقرأ أيضاً

We use the Mopra radio telescope to test for expansion of the molecular gas associated with the bubble HII region RCW120. A ring, or bubble, morphology is common for Galactic HII regions, but the three-dimensional geometry of such objects is still un clear. Detected near- and far-side expansion of the associated molecular material would be consistent with a three-dimensional spherical object. We map the $J = 1rightarrow 0$ transitions of $^{12}$CO, $^{13}$CO, C$^{18}$O, and C$^{17}$O, and detect emission from all isotopologues. We do not detect the $0_0rightarrow 1_{-1} E$ masing lines of CH$_3$OH at 108.8939 GHz. The strongest CO emission is from the photodissociation region (PDR), and there is a deficit of emission toward the bubble interior. We find no evidence for expansion of the molecular material associated with RCW120 and therefore can make no claims about its geometry. The lack of detected expansion is roughly in agreement with models for the time-evolution of an HII region like RCW120, and is consistent with an expansion speed of $< 1.5, {rm km, s^{-1}}$. Single-position CO spectra show signatures of expansion, which underscores the importance of mapped spectra for such work. Dust temperature enhancements outside the PDR of RCW120 coincide with a deficit of emission in CO, confirming that these temperature enhancements are due to holes in the RCW120 PDR. H$alpha$ emission shows that RCW120 is leaking $sim5%$ of the ionizing photons into the interstellar medium (ISM) through PDR holes at the locations of the temperature enhancements. H-alpha emission also shows a diffuse halo from leaked photons not associated with discrete holes in the PDR. Overall $25pm10%$ of all ionizing photons are leaking into the nearby ISM.
238 - V. S. Veena 2015
IRAS 17256-3631 is a southern Galactic massive star forming region located at a distance of 2 kpc. In this paper, we present a multiwavelength investigation of the embedded cluster, the HII region, as well as the parent cloud. Radio images at 325, 61 0 and 1372 MHz were obtained using GMRT, India while the near-infrared imaging and spectroscopy were carried out using UKIRT and Mt. Abu Infrared Telescope, India. The near-infrared K-band image reveals the presence of a partially embedded infrared cluster. The spectral features of the brightest star in the cluster, IRS-1, spectroscopically agrees with a late O or early B star and could be the driving source of this region. Filamentary H_2 emission detected towards the outer envelope indicates presence of highly excited gas. The parent cloud is investigated at far-infrared to millimeter wavelengths and eighteen dust clumps have been identified. The spectral energy distributions (SEDs) of these clumps have been fitted as modified blackbodies and the best-fit peak temperatures are found to range from 14-33 K, while the column densities vary from 0.7-8.5x10^22 cm^-2. The radio maps show a cometary morphology for the distribution of ionized gas that is density bounded towards the north-west and ionization bounded towards the south-east. This morphology is better explained with the champagne flow model as compared to the bow shock model. Using observations at near, mid and far-infrared, submillimeter and radio wavelengths, we examine the evolutionary stages of various clumps.
69 - S. Vig , S. K. Ghosh (2 2014
The southern Galactic high mass star-forming region, G351.6-1.3, is a HII region-molecular cloud complex with a luminosity of 2.0 x 10^5 L_sun, located at a distance of 2.4 kpc. In this paper, we focus on the investigation of the associated HII regio n, embedded cluster and the interstellar medium in the vicinity of G351.6-1.3. We address the identification of exciting source(s) as well as the census of stellar populations. The ionised gas distribution has been mapped using the Giant Metrewave Radio Telescope (GMRT), India at three continuum frequencies: 1280, 610 and 325 MHz. The HII region shows an elongated morphology and the 1280 MHz map comprises six resolved high density regions encompassed by diffuse emission spanning 1.4 pc x 1.0 pc. The zero age main-sequence (ZAMS) spectral type of the brightest radio core is O7.5. We have carried out near-infrared observations in the JHKs bands using the SIRIUS instrument on the 1.4 m Infrared Survey Facility (IRSF) telescope. The near-infrared images reveal the presence of a cluster embedded in nebulous fan-shaped emission. The log-normal slope of the K-band luminosity function of the embedded cluster is found to be 0.27 +- 0.03 and the fraction of the near-infrared excess stars is estimated to be 43%. These indicate that the age of the cluster is consistent with 1 Myr. The champagne flow model from a flat, thin molecular cloud is used to explain the morphology of radio emission with respect to the millimetre cloud and infrared brightness.
We investigated the star formation activities in the AFGL333 region, which is in the vicinity of the W4 expanding bubble, by conducting NH3 (1,1), (2,2), and (3,3) mapping observations with the 45 m Nobeyama Radio Telescope at an angular resolution o f 75. The morphology of the NH3 (1,1) map shows a bow-shape structure with the size of 2.0 x 0.6 pc as seen in the dust continuum. At the interface between the W4 bubble and the dense NH3 cloud, the compact HII region G134.2+0.8, associated with IRAS02245+6115, is located. Interestingly, just north and south of G134.2+0.8 we found NH3 emission exhibiting large velocity widths of ~ 2.8 km/s, compared to 1.8 km/s at the other positions. As the possibility of mechanical energy injection through the activity of YSO(s) is low, we considered the origin of the large turbulent gas motion as indication of interaction between the compact HII region and the periphery of the dense molecular cloud. We also found expanding motion of the CO emission associated with G134.2+0.8. The overall structure of the AFGL333-Ridge might have been formed by the expanding bubble of W4. However, the small velocity widths observed west of IRAS02245+6115, around the center of the dense molecular cloud, suggest that interaction with the compact HII region is limited. Therefore the YSOs (dominantly Class 0/I) in the core of the AFGL333-Ridge dense molecular cloud most likely formed in quiescent mode. As has been previously suggested for the large scale star formation in the W3 giant molecular cloud, our results show an apparent coexistence of induced and quiescent star formation in this region. It appears that star formation in the AFGL333 region has proceeded without significant external triggers, but accompanying stellar feedback environment.
Triggered star formation around HII regions could be an important process. The Galactic HII region RCW 79 is a prototypical object for triggered high-mass star formation. We take advantage of Herschel data from the surveys HOBYS, Evolution of Interst ellar Dust, and Hi-Gal to extract compact sources in this region, complemented with archival 2MASS, Spitzer, and WISE data to determine the physical parameters of the sources (e.g., envelope mass, dust temperature, and luminosity) by fitting the spectral energy distribution. We obtained a sample of 50 compact sources, 96% of which are situated in the ionization-compressed layer of cold and dense gas that is characterized by the column density PDF with a double-peaked lognormal distribution. The 50 sources have sizes of 0.1-0.4 pc with a typical value of 0.2 pc, temperatures of 11-26 K, envelope masses of 6-760 $M_odot$, densities of 0.1-44 $times$ $10^5$ cm$^{-3}$, and luminosities of 19-12712 $L_odot$. The sources are classified into 16 class 0, 19 intermediate, and 15 class I objects. Their distribution follows the evolutionary tracks in the diagram of bolometric luminosity versus envelope mass (Lbol-Menv) well. A mass threshold of 140 $M_odot$, determined from the Lbol-Menv diagram, yields 12 candidate massive dense cores that may form high-mass stars. The core formation efficiency (CFE) for the 8 massive condensations shows an increasing trend of the CFE with density. This suggests that the denser the condensation, the higher the fraction of its mass transformation into dense cores, as previously observed in other high-mass star-forming regions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا