ترغب بنشر مسار تعليمي؟ اضغط هنا

Spatio-Temporal Graph Transformer Networks for Pedestrian Trajectory Prediction

219   0   0.0 ( 0 )
 نشر من قبل Xiao Ma
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Understanding crowd motion dynamics is critical to real-world applications, e.g., surveillance systems and autonomous driving. This is challenging because it requires effectively modeling the socially aware crowd spatial interaction and complex temporal dependencies. We believe attention is the most important factor for trajectory prediction. In this paper, we present STAR, a Spatio-Temporal grAph tRansformer framework, which tackles trajectory prediction by only attention mechanisms. STAR models intra-graph crowd interaction by TGConv, a novel Transformer-based graph convolution mechanism. The inter-graph temporal dependencies are modeled by separate temporal Transformers. STAR captures complex spatio-temporal interactions by interleaving between spatial and temporal Transformers. To calibrate the temporal prediction for the long-lasting effect of disappeared pedestrians, we introduce a read-writable external memory module, consistently being updated by the temporal Transformer. We show that with only attention mechanism, STAR achieves state-of-the-art performance on 5 commonly used real-world pedestrian prediction datasets.



قيم البحث

اقرأ أيضاً

Detecting pedestrians and predicting future trajectories for them are critical tasks for numerous applications, such as autonomous driving. Previous methods either treat the detection and prediction as separate tasks or simply add a trajectory regres sion head on top of a detector. In this work, we present a novel end-to-end two-stage network: Spatio-Temporal-Interactive Network (STINet). In addition to 3D geometry modeling of pedestrians, we model the temporal information for each of the pedestrians. To do so, our method predicts both current and past locations in the first stage, so that each pedestrian can be linked across frames and the comprehensive spatio-temporal information can be captured in the second stage. Also, we model the interaction among objects with an interaction graph, to gather the information among the neighboring objects. Comprehensive experiments on the Lyft Dataset and the recently released large-scale Waymo Open Dataset for both object detection and future trajectory prediction validate the effectiveness of the proposed method. For the Waymo Open Dataset, we achieve a bird-eyes-view (BEV) detection AP of 80.73 and trajectory prediction average displacement error (ADE) of 33.67cm for pedestrians, which establish the state-of-the-art for both tasks.
This paper investigates trajectory prediction for robotics, to improve the interaction of robots with moving targets, such as catching a bouncing ball. Unexpected, highly-non-linear trajectories cannot easily be predicted with regression-based fittin g procedures, therefore we apply state of the art machine learning, specifically based on Long-Short Term Memory (LSTM) architectures. In addition, fast moving targets are better sensed using event cameras, which produce an asynchronous output triggered by spatial change, rather than at fixed temporal intervals as with traditional cameras. We investigate how LSTM models can be adapted for event camera data, and in particular look at the benefit of using asynchronously sampled data.
Predicting the future paths of an agents neighbors accurately and in a timely manner is central to the autonomous applications for collision avoidance. Conventional approaches, e.g., LSTM-based models, take considerable computational costs in the pre diction, especially for the long sequence prediction. To support more efficient and accurate trajectory predictions, we propose a novel CNN-based spatial-temporal graph framework GraphTCN, which models the spatial interactions as social graphs and captures the spatio-temporal interactions with a modified temporal convolutional network. In contrast to conventional models, both the spatial and temporal modeling of our model are computed within each local time window. Therefore, it can be executed in parallel for much higher efficiency, and meanwhile with accuracy comparable to best-performing approaches. Experimental results confirm that our model achieves better performance in terms of both efficiency and accuracy as compared with state-of-the-art models on various trajectory prediction benchmark datasets.
Better machine understanding of pedestrian behaviors enables faster progress in modeling interactions between agents such as autonomous vehicles and humans. Pedestrian trajectories are not only influenced by the pedestrian itself but also by interact ion with surrounding objects. Previous methods modeled these interactions by using a variety of aggregation methods that integrate different learned pedestrians states. We propose the Social Spatio-Temporal Graph Convolutional Neural Network (Social-STGCNN), which substitutes the need of aggregation methods by modeling the interactions as a graph. Our results show an improvement over the state of art by 20% on the Final Displacement Error (FDE) and an improvement on the Average Displacement Error (ADE) with 8.5 times less parameters and up to 48 times faster inference speed than previously reported methods. In addition, our model is data efficient, and exceeds previous state of the art on the ADE metric with only 20% of the training data. We propose a kernel function to embed the social interactions between pedestrians within the adjacency matrix. Through qualitative analysis, we show that our model inherited social behaviors that can be expected between pedestrians trajectories. Code is available at https://github.com/abduallahmohamed/Social-STGCNN.
In this paper, we propose a novel Transformer-based architecture for the task of generative modelling of 3D human motion. Previous works commonly rely on RNN-based models considering shorter forecast horizons reaching a stationary and often implausib le state quickly. Instead, our focus lies on the generation of plausible future developments over longer time horizons. To mitigate the issue of convergence to a static pose, we propose a novel architecture that leverages the recently proposed self-attention concept. The task of 3D motion prediction is inherently spatio-temporal and thus the proposed model learns high dimensional embeddings for skeletal joints followed by a decoupled temporal and spatial self-attention mechanism. This allows the model to access past information directly and to capture spatio-temporal dependencies explicitly. We show empirically that this reduces error accumulation over time and allows for the generation of perceptually plausible motion sequences over long time horizons up to 20 seconds as well as accurate short-term predictions. Accompanying video available at https://youtu.be/yF0cdt2yCNE.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا