ﻻ يوجد ملخص باللغة العربية
We study joint eigenvector distributions for large symmetric matrices in the presence of weak noise. Our main result asserts that every submatrix in the orthogonal matrix of eigenvectors converges to a multidimensional Gaussian distribution. The proof involves analyzing the stochastic eigenstate equation (SEE) which describes the Lie group valued flow of eigenvectors induced by matrix valued Brownian motion. We consider the associated colored eigenvector moment flow defining an SDE on a particle configuration space. This flow extends the eigenvector moment flow first introduced in Bourgade and Yau (2017) to the multicolor setting. However, it is no longer driven by an underlying Markov process on configuration space due to the lack of positivity in the semigroup kernel. Nevertheless, we prove the dynamics admit sufficient averaged decay and contractive properties. This allows us to establish optimal time of relaxation to equilibrium for the colored eigenvector moment flow and prove joint asymptotic normality for eigenvectors. Applications in random matrix theory include the explicit computations of joint eigenvector distributions for general Wigner type matrices and sparse graph models when corresponding eigenvalues lie in the bulk of the spectrum, as well as joint eigenvector distributions for Levy matrices when the eigenvectors correspond to small energy levels.
We will prove the Berry-Esseen theorem for the number counting function of the circular $beta$-ensemble (C$beta$E), which will imply the central limit theorem for the number of points in arcs. We will prove the main result by estimating the character
We prove localization with high probability on sets of size of order $N/log N$ for the eigenvectors of non-Hermitian finitely banded $Ntimes N$ Toeplitz matrices $P_N$ subject to small random perturbations, in a very general setting. As perturbation
Multidimensional Scaling (MDS) is a classical technique for embedding data in low dimensions, still in widespread use today. Originally introduced in the 1950s, MDS was not designed with high-dimensional data in mind; while it remains popular with da
We present a basis of eigenvectors for the graph building operators acting along the mirror channel of planar fishnet Feynman integrals in $d$-dimensions. The eigenvectors of a fishnet lattice of length $L$ depend on a set of $L$ quantum numbers $(u_
We study the number of facets of the convex hull of n independent standard Gaussian points in d-dimensional Euclidean space. In particular, we are interested in the expected number of facets when the dimension is allowed to grow with the sample size.