ﻻ يوجد ملخص باللغة العربية
We will prove the Berry-Esseen theorem for the number counting function of the circular $beta$-ensemble (C$beta$E), which will imply the central limit theorem for the number of points in arcs. We will prove the main result by estimating the characteristic functions of the Prufer phases and the number counting function, which will imply the the uniform upper and lower bounds of their variance. We also show that the similar results hold for the Sine$_beta$ process. As a direct application of the uniform variance bound, we can prove the normality of the linear statistics when the test function $f(theta)in W^{1,p}(S^1)$ for some $pin(1,+infty)$.
We provide a precise coupling of the finite circular beta ensembles and their limit process via their operator representations. We prove explicit bounds on the distance of the operators and the corresponding point processes. We also prove an estimate
We prove an operator level limit for the circular Jacobi $beta$-ensemble. As a result, we characterize the counting function of the limit point process via coupled systems of stochastic differential equations. We also show that the normalized charact
We prove rates of convergence for the circular law for the complex Ginibre ensemble. Specifically, we bound the expected $L_p$-Wasserstein distance between the empirical spectral measure of the normalized complex Ginibre ensemble and the uniform meas
We study joint eigenvector distributions for large symmetric matrices in the presence of weak noise. Our main result asserts that every submatrix in the orthogonal matrix of eigenvectors converges to a multidimensional Gaussian distribution. The proo
A known result in random matrix theory states the following: Given a random Wigner matrix $X$ which belongs to the Gaussian Orthogonal Ensemble (GOE), then such matrix $X$ has an invariant distribution under orthogonal conjugations. The goal of this