ﻻ يوجد ملخص باللغة العربية
According to the third law of Thermodynamics, it takes an infinite number of steps for any object, including black-holes, to reach zero temperature. For any physical system, the process of cooling to absolute zero corresponds to erasing information or generating pure states. In contrast with the ordinary matter, the black-hole temperature can be lowered only by adding matter-energy into it. However, it is impossible to remove the statistical fluctuations of the infalling matter-energy. The fluctuations lead to the fact the black-holes have a finite lower temperature and, hence, an upper bound on the horizon radius. We make an estimate of the upper bound for the horizon radius which is curiosly comparable to Hubble horizon. We compare this bound with known results and discuss its implications.
In the study of perturbations around black hole configurations, whether an external source can influence the perturbation behavior is an interesting topic to investigate. When the source acts as an initial pulse, it is intuitively acceptable that the
It is known that the Meissner-like effect is seen in a magnetosphere without an electric current in black hole spacetime: no non-monopole component of magnetic flux penetrates the event horizon if the black hole is extreme. In this paper, in order to
We present a critical assessment of the SN1987A supernova cooling bound on axions and other light particles. Core-collapse simulations used in the literature to substantiate the bound omitted from the calculation the envelope exterior to the proto-ne
We compute the radiation emitted by a particle on the innermost stable circular orbit of a rapidly spinning black hole both (a) analytically, working to leading order in the deviation from extremality and (b) numerically, with a new high-precision Te
We formulate and solve the problem of spherically symmetric, steady state, adiabatic accretion onto a Schwarzschild-like black hole obtained recently. We derive the general analytic expressions for the critical points, the critical velocity, the crit