ترغب بنشر مسار تعليمي؟ اضغط هنا

Adaptive Influence Maximization: If Influential Node Unwilling to Be the Seed

113   0   0.0 ( 0 )
 نشر من قبل Jianxiong Guo
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Influence maximization problem attempts to find a small subset of nodes that makes the expected influence spread maximized, which has been researched intensively before. They all assumed that each user in the seed set we select is activated successfully and then spread the influence. However, in the real scenario, not all users in the seed set are willing to be an influencer. Based on that, we consider each user associated with a probability with which we can activate her as a seed, and we can attempt to activate her many times. In this paper, we study the adaptive influence maximization with multiple activations (Adaptive-IMMA) problem, where we select a node in each iteration, observe whether she accepts to be a seed, if yes, wait to observe the influence diffusion process; If no, we can attempt to activate her again with a higher cost or select another node as a seed. We model the multiple activations mathematically and define it on the domain of integer lattice. We propose a new concept, adaptive dr-submodularity, and show our Adaptive-IMMA is the problem that maximizing an adaptive monotone and dr-submodular function under the expected knapsack constraint. Adaptive dr-submodular maximization problem is never covered by any existing studies. Thus, we summarize its properties and study its approximability comprehensively, which is a non-trivial generalization of existing analysis about adaptive submodularity. Besides, to overcome the difficulty to estimate the expected influence spread, we combine our adaptive greedy policy with sampling techniques without losing the approximation ratio but reducing the time complexity. Finally, we conduct experiments on several real datasets to evaluate the effectiveness and efficiency of our proposed policies.



قيم البحث

اقرأ أيضاً

We study the online influence maximization (OIM) problem in social networks, where in multiple rounds the learner repeatedly chooses seed nodes to generate cascades, observes the cascade feedback, and gradually learns the best seeds that generate the largest cascade. We focus on two major challenges in this paper. First, we work with node-level feedback instead of edge-level feedback. The edge-level feedback reveals all edges that pass through information in a cascade, where the node-level feedback only reveals the activated nodes with timestamps. The node-level feedback is arguably more realistic since in practice it is relatively easy to observe who is influenced but very difficult to observe from which relationship (edge) the influence comes from. Second, we use standard offline oracle instead of offline pair-oracle. To compute a good seed set for the next round, an offline pair-oracle finds the best seed set and the best parameters within the confidence region simultaneously, and such an oracle is difficult to compute due to the combinatorial core of OIM problem. So we focus on how to use the standard offline influence maximization oracle which finds the best seed set given the edge parameters as input. In this paper, we resolve these challenges for the two most popular diffusion models, the independent cascade (IC) and the linear threshold (LT) model. For the IC model, the past research only achieves edge-level feedback, while we present the first $widetilde{O}(sqrt{T})$-regret algorithm for the node-level feedback. Besides, the algorithm only invokes standard offline oracles. For the LT model, a recent study only provides an OIM solution that meets the first challenge but still requires a pair-oracle. In this paper, we apply a similar technique as in the IC model to replace the pair-oracle with a standard oracle while maintaining $widetilde{O}(sqrt{T})$-regret.
In real-world applications of influence maximization (IM), the network structure is often unknown. In this case, we may identify the most influential seed nodes by exploring only a part of the underlying network given a small budget for node queries. Motivated by the fact that collecting node metadata is more cost-effective than investigating the relationship between nodes via queried nodes, we develop IM-META, an end-to-end solution to IM in networks with unknown topology by retrieving information from both queries and node metadata. However, using such metadata to aid the IM process is not without risk due to the noisy nature of metadata and uncertainties in connectivity inference. To tackle these challenges, we formulate an IM problem that aims to find two sets, i.e., seed nodes and queried nodes. We propose an effective method that iteratively performs three steps: 1) we learn the relationship between collected metadata and edges via a Siamese neural network model, 2) we select a number of inferred influential edges to construct a reinforced graph used for discovering an optimal seed set, and 3) we identify the next node to query by maximizing the inferred influence spread using a topology-aware ranking strategy. By querying only 5% of nodes, IM-META reaches 93% of the upper bound performance.
85 - Xinran He , David Kempe 2016
Uncertainty about models and data is ubiquitous in the computational social sciences, and it creates a need for robust social network algorithms, which can simultaneously provide guarantees across a spectrum of models and parameter settings. We begin an investigation into this broad domain by studying robust algorithms for the Influence Maximization problem, in which the goal is to identify a set of k nodes in a social network whose joint influence on the network is maximized. We define a Robust Influence Maximization framework wherein an algorithm is presented with a set of influence functions, typically derived from different influence models or different parameter settings for the same model. The different parameter settings could be derived from observed cascades on different topics, under different conditions, or at different times. The algorithms goal is to identify a set of k nodes who are simultaneously influential for all influence functions, compared to the (function-specific) optimum solutions. We show strong approximation hardness results for this problem unless the algorithm gets to select at least a logarithmic factor more seeds than the optimum solution. However, when enough extra seeds may be selected, we show that techniques of Krause et al. can be used to approximate the optimum robust influence to within a factor of 1 - 1/e. We evaluate this bicriteria approximation algorithm against natural heuristics on several real-world data sets. Our experiments indicate that the worst-case hardness does not necessarily translate into bad performance on real-world data sets; all algorithms perform fairly well.
Influence Maximization is a NP-hard problem of selecting the optimal set of influencers in a network. Here, we propose two new approaches to influence maximization based on two very different metrics. The first metric, termed Balanced Index (BI), is fast to compute and assigns top values to two kinds of nodes: those with high resistance to adoption, and those with large out-degree. This is done by linearly combining three properties of a node: its degree, susceptibility to new opinions, and the impact its activation will have on its neighborhood. Controlling the weights between those three terms has a huge impact on performance. The second metric, termed Group Performance Index (GPI), measures performance of each node as an initiator when it is a part of randomly selected initiator set. In each such selection, the score assigned to each teammate is inversely proportional to the number of initiators causing the desired spread. These two metrics are applicable to various cascade models; here we test them on the Linear Threshold Model with fixed and known thresholds. Furthermore, we study the impact of network degree assortativity and threshold distribution on the cascade size for metrics including ours. The results demonstrate our two metrics deliver strong performance for influence maximization.
Influence Maximization (IM) aims to maximize the number of people that become aware of a product by finding the `best set of `seed users to initiate the product advertisement. Unlike prior arts on static social networks containing fixed number of use rs, we undertake the first study of IM in more realistic evolving networks with temporally growing topology. The task of evolving IM ({bfseries EIM}), however, is far more challenging over static cases in the sense that seed selection should consider its impact on future users and the probabilities that users influence one another also evolve over time. We address the challenges through $mathbb{EIM}$, a newly proposed bandit-based framework that alternates between seed nodes selection and knowledge (i.e., nodes growing speed and evolving influences) learning during network evolution. Remarkably, $mathbb{EIM}$ involves three novel components to handle the uncertainties brought by evolution:
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا