ﻻ يوجد ملخص باللغة العربية
With the aim to loosen the entanglement requirements of quantum illumination, we study the performance of a family of Gaussian states at the transmitter, combined with an optimal and joint quantum measurement at the receiver. We find that maximal entanglement is not strictly necessary to achieve quantum advantage over the classical benchmark of a coherent-state transmitter, in both settings of symmetric and asymmetric hypothesis testing. While performing this quantum-classical comparison, we also investigate a suitable regime of parameters for potential short-range radar (or scanner) applications.
The quantum illumination is examined by making use of the three-mode maximally entangled Gaussian state, which involves one signal and two idler beams. It is shown that the quantum Bhattacharyya bound between $rho$ (state for target absence) and $sig
We cast the problem of illuminating an object in a noisy environment into a communication protocol. A probe is sent into the environment, and the presence or absence of the object constitutes a signal encoded on the probe. The probe is then measured
Deterministic GHz-rate single photon sources at room-temperature would be essential components for various quantum applications. However, both the slow intrinsic decay rate and the omnidirectional emission of typical quantum emitters are two obstacle
Quantum technology requires the creation and control over single photons as an important resource. We present a single photon source based on a single molecule which is attached to the end-facet of an optical fiber. To realize a narrow linewidth, the
We propose optimal observables for Gaussian illumination to maximize the signal-to-noise ratio, which minimizes the discrimination error between the presence and absence of a low-reflectivity target using Gaussian states. The optimal observables domi