ترغب بنشر مسار تعليمي؟ اضغط هنا

A narrow-band sodium-resonant fiber-coupled single photon source

68   0   0.0 ( 0 )
 نشر من قبل Ilja Gerhardt
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Quantum technology requires the creation and control over single photons as an important resource. We present a single photon source based on a single molecule which is attached to the end-facet of an optical fiber. To realize a narrow linewidth, the system is cooled down to liquid-helium temperatures. The molecule is optically excited and its fluorescence is collected through the fiber. We have recorded an excitation spectrum, a saturation curve and analyzed the contributions of Raman background fluorescence. This presents to date the crucial limit for the introduced device. The single photon nature is proven by an anti-bunched auto-correlation recording, which also shows coherent Rabi oscillations.

قيم البحث

اقرأ أيضاً

In this work, we present a stand-alone and fiber-coupled quantum-light source. The plug-and-play device is based on an optically driven quantum dot delivering single photons via an optical fiber. The quantum dot is deterministically integrated in a m onolithic microlens which is precisely coupled to the core of an optical fiber via active optical alignment and epoxide adhesive bonding. The rigidly coupled fiber-emitter assembly is integrated in a compact Stirling cryocooler with a base temperature of 35 K. We benchmark our practical quantum device via photon auto-correlation measurements revealing $g^{(2)}(0)=0.07 pm 0.05$ under continuous-wave excitation and we demonstrate triggered non-classical light at a repetition rate of 80 MHz. The long-term stability of our quantum light source is evaluated by endurance tests showing that the fiber-coupled quantum dot emission is stable within 4% over several successive cool-down/warm-up cycles. Additionally, we demonstrate non-classical photon emission for a user-intervention-free 100-hour test run and stable single-photon count rates up to 11.7 kHz with a standard deviation of 4%.
We measure the detection efficiency of single-photon detectors at wavelengths near 851 nm and 1533.6 nm. We investigate the spatial uniformity of one free-space-coupled single-photon avalanche diode and present a comparison between fusion-spliced and connectorized fiber-coupled single-photon detectors. We find that our expanded relative uncertainty for a single measurement of the detection efficiency is as low as 0.70 % for fiber-coupled measurements at 1533.6 nm and as high as 1.78 % for our free-space characterization at 851.7 nm. The detection-efficiency determination includes corrections for afterpulsing, dark count, and count-rate effects of the single-photon detector with the detection efficiency interpolated to operation at a specified detected count rate.
We propose a scheme for the generation of counterpropagating polarization-entangled photon pairs from a dual-periodically poled crystal. Compared with the usual forward-wave type source, this source, in the backward-wave way, has a much narrower band width. With a 2-cm-long bulk crystal, the bandwidths of the example sources are estimated to be 3.6 GHz, and the spectral brightnesses are more than 100 pairs/(s GHz mW). Two concurrent quasi-phase-matched spontaneous parametric down-conversion processes in a single crystal enable our source to be compact and stable. This scheme does not rely on any state projection and applies to both degenerate and non-degenerate cases, facilitating applications of the entangled photons.
Heralded single photon source (HSPS) is an important way in generating genuine single photon, having advantages of experimental simplicity and versatility. However, HSPS intrinsically suffers from the trade-off between the heralded single photon rate and the single photon purity. To overcome this, one can apply multiplexing technology in different degrees of freedom to enhance the performance of HSPS. Here, by employing spectral multiplexing and active feed-forward spectral manipulating, we demonstrate a HSPS at 1.5 {mu}m telecom-band. Our experimental results show that the spectral multiplexing effectively erases the frequency correlation of pair source and significantly improves the heralded single photon rate while keeping the g{^(^2^)}(0) as low as 0.0006{pm}0.0001. The Hong-Ou-Mandel interference between the heralded single photons and photons from an independent weak coherent source indicates a high indistinguishability. Our results pave a way for scalable HSPS by spectral multiplexing towards deterministic single photon emission.
In this work, we present a novel device that is a combination of a superconducting nanowire single-photon detector and a superconducting multi-level memory. We show that these devices can be used to count the number of detections through single-photo n to single-flux conversion. Electrical characterization of the memory properties demonstrates single-flux quantum (SFQ) separated states. Optical measurements using attenuated laser pulses with different mean photon number, pulse energies and repetition rates are shown to differentiate single-photon detection from other possible phenomena, such as multi-photon detection and thermal activation. Finally, different geometries and material stacks to improve device performance, as well as arraying methods are discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا