ترغب بنشر مسار تعليمي؟ اضغط هنا

Frankenstein: Protoplanetary disc brightness profile reconstruction at sub-beam resolution with a rapid Gaussian process

198   0   0.0 ( 0 )
 نشر من قبل Jeff Jennings
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Interferometric observations of the mm dust distribution in protoplanetary discs are now showing a ubiquity of annular gap and ring substructures. Their identification and accurate characterization is critical to probing the physical processes responsible. We present Frankenstein (frank), an open source code that recovers axisymmetric disc structures at sub-beam resolution. By fitting the visibilities directly, the model reconstructs a discs 1D radial brightness profile nonparametrically using a fast (<~1 min) Gaussian process. The code avoids limitations of current methods that obtain the radial brightness profile by either extracting it from the disc image via nonlinear deconvolution at the cost of reduced fit resolution, or by assumptions placed on the functional forms of disc structures to fit the visibilities parametrically. We use mock ALMA observations to quantify the methods intrinsic capability and its performance as a function of baseline-dependent signal-to-noise. Comparing the technique to profile extraction from a CLEAN image, we motivate how our fits accurately recover disc structures at a sub-beam resolution. Demonstrating the models utility in fitting real high and moderate resolution observations, we conclude by proposing applications to address open questions on protoplanetary disc structure and processes.



قيم البحث

اقرأ أيضاً

New photometric space missions to detect and characterise transiting exoplanets are focusing on bright stars to obtain high cadence, high signal-to-noise light curves. Since these missions will be sensitive to stellar oscillations and granulation eve n for dwarf stars, they will be limited by stellar variability. We tested the performance of Gaussian process (GP) regression on the characterisation of transiting planets, and in particular to determine how many components of variability are necessary to describe high cadence, high signal-to-noise light curves expected from CHEOPS and PLATO. We found that the best GP stellar variability model contains four to five variability components: one stellar oscillation component, two to four granulation components, and/or one rotational modulation component. This high number of components is in contrast with the one-component GP model (1GP) commonly used in the literature for transit characterisation. Therefore, we compared the performance of the best multi-component GP model with the 1GP model in the derivation of transit parameters of simulated transits. We found that for Jupiter- and Neptune-size planets the best multi-component GP model is slightly better than the 1GP model, and much better than the non-GP model that gives biased results. For Earth-size planets, the 1GP model fails to retrieve the transit because it is a poor description of stellar activity. The non-GP model gives some biased results and the best multi-component GP is capable of retrieving the correct transit model parameters. We conclude that when characterising transiting exoplanets with high signal-to-noise ratios and high cadence light curves, we need models that couple the description of stellar variability with the transits analysis, like GPs. Moreover, for Earth-like exoplanets a better description of stellar variability improves the planetary characterisation.
Circumstellar discs may become warped or broken into distinct planes if there is a stellar or planetary companion with an orbit that is misaligned with respect to the disc. There is mounting observational evidence for protoplanetary discs with misali gned inner discs and warps that may be caused by such interactions with a previously undetected companion, giving us a tantalising indication of possible planets forming there. Hydrodynamical and radiative transfer models indicate that the temperature varies azimuthally in warped discs due to the variable angle at which the disc surface faces the star and this impacts the disc chemistry. We perform chemical modelling based on a hydrodynamical model of a protoplanetary disc with an embedded planet orbiting at a 12$^{circ}$ inclination to the disc. Even for this small misalignment, abundances of species including CO and HCO$^+$ vary azimuthally and this results in detectable azimuthal variations in submillimetre line emission. Azimuthal variations in line emission may therefore indicate the presence of an unseen embedded companion. Nonaxisymmetric chemical abundances should be considered when interpreting molecular line maps of warped or shadowed protoplanetary discs.
Radial-velocity (RV) planet searches are often polluted by signals caused by gas motion at the stars surface. Stellar activity can mimic or mask changes in the RVs caused by orbiting planets, resulting in false positives or missed detections. Here we use Gaussian process (GP) regression to disentangle the contradictory reports of planets vs. rotation artifacts in Kapteyns star (Anglada-Escude et al. 2014, Robertson et al. 2015, Anglada-Escude et al. 2016). To model rotation, we use joint quasi-periodic kernels for the RV and H-alpha signals, requiring that their periods and correlation timescales be the same. We find that the rotation period of Kapteyns star is 125 days, while the characteristic active-region lifetime is 694 days. Adding a planet to the RV model produces a best-fit orbital period of 100~years, or 10 times the observing time baseline, indicating that the observed RVs are best explained by star rotation only. We also find no significant periodic signals in residual RV data sets constructed by subtracting off realizations of the best-fit rotation model and conclude that both previously reported planets are artifacts of the stars rotation and activity. Our results highlight the pitfalls of using sinusoids to model quasi-periodic rotation signals.
We develop an automated technique to measure quasar redshifts in the Baryon Oscillation Spectroscopic Survey (BOSS) of the Sloan Digital Sky Survey (SDSS). Our technique is an extension of an earlier Gaussian process method for detecting damped Lyman -alpha absorbers (DLAs) in quasar spectra with known redshifts. We apply this technique to a subsample of SDSS DR12 with BAL quasars removed and redshift larger than 2.15. We show that we are broadly competitive to existing quasar redshift estimators, disagreeing with the PCA redshift by more than 0.5 in only 0.38% of spectra. Our method produces a probabilistic density function for the quasar redshift, allowing quasar redshift uncertainty to be propagated to downstream users. We apply this method to detecting DLAs, accounting in a Bayesian fashion for redshift uncertainty. Compared to our earlier method with a known quasar redshift, we have a moderate decrease in our ability to detect DLAs, predominantly in the noisiest spectra. The area under curve drops from 0.96 to 0.91. Our code is publicly available.
The Protoplanetary Discussions conference --- held in Edinburgh, UK, from 7th --11th March 2016 --- included several open sessions led by participants. This paper reports on the discussions collectively concerned with the multiphysics modelling of pr otoplanetary discs, including the self-consistent calculation of gas and dust dynamics, radiative transfer and chemistry. After a short introduction to each of these disciplines in isolation, we identify a series of burning questions and grand challenges associated with their continuing development and integration. We then discuss potential pathways towards solving these challenges, grouped by strategical, technical and collaborative developments. This paper is not intended to be a review, but rather to motivate and direct future research and collaboration across typically distinct fields based on textit{community driven input}, to encourage further progress in our understanding of circumstellar and protoplanetary discs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا