ترغب بنشر مسار تعليمي؟ اضغط هنا

A Gaussian Process Regression Reveals No Evidence for Planets Orbiting Kapteyns Star

136   0   0.0 ( 0 )
 نشر من قبل Sarah Dodson-Robinson
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Radial-velocity (RV) planet searches are often polluted by signals caused by gas motion at the stars surface. Stellar activity can mimic or mask changes in the RVs caused by orbiting planets, resulting in false positives or missed detections. Here we use Gaussian process (GP) regression to disentangle the contradictory reports of planets vs. rotation artifacts in Kapteyns star (Anglada-Escude et al. 2014, Robertson et al. 2015, Anglada-Escude et al. 2016). To model rotation, we use joint quasi-periodic kernels for the RV and H-alpha signals, requiring that their periods and correlation timescales be the same. We find that the rotation period of Kapteyns star is 125 days, while the characteristic active-region lifetime is 694 days. Adding a planet to the RV model produces a best-fit orbital period of 100~years, or 10 times the observing time baseline, indicating that the observed RVs are best explained by star rotation only. We also find no significant periodic signals in residual RV data sets constructed by subtracting off realizations of the best-fit rotation model and conclude that both previously reported planets are artifacts of the stars rotation and activity. Our results highlight the pitfalls of using sinusoids to model quasi-periodic rotation signals.

قيم البحث

اقرأ أيضاً

Two studies utilizing sparse aperture masking (SAM) interferometry and $H_{rm alpha}$ differential imaging have reported multiple jovian companions around the young solar-mass star, LkCa 15 (LkCa 15 bcd): the first claimed direct detection of infant, newly-formed planets (protoplanets). We present new near-infrared direct imaging/spectroscopy from the SCExAO system coupled with the CHARIS integral field spectrograph and multi-epoch thermal infrared imaging from Keck/NIRC2 of LkCa 15 at high Strehl ratios. These data provide the first direct imaging look at the same wavelengths and in the same locations where previous studies identified the LkCa 15 protoplanets and thus offer the first decisive test of their existence. The data do not reveal these planets. Instead, we resolve extended emission tracing a dust disk with a brightness and location comparable to that claimed for LkCa 15 bcd. Forward-models attributing this signal to orbiting planets are inconsistent with the combined SCExAO/CHARIS and Keck/NIRC2 data. An inner disk provides a more compelling explanation for the SAM detections and perhaps also the claimed $H_{alpha}$ detection of LkCa 15 b. We conclude that there is currently no clear, direct evidence for multiple protoplanets orbiting LkCa 15, although the system likely contains at least one unseen jovian companion. To identify jovian companions around LkCa 15 from future observations, the inner disk should be detected and its effect modeled, removed, and shown to be distinguishable from planets. Protoplanet candidates identified from similar systems should likewise be clearly distinguished from disk emission through modeling.
We present a comprehensive analysis of 10 years of HARPS radial velocities of the K2V dwarf star HD 13808, which has previously been reported to host two unconfirmed planet candidates. We use the state-of-the-art nested sampling algorithm PolyChord t o compare a wide variety of stellar activity models, including simple models exploiting linear correlations between RVs and stellar activity indicators, harmonic models for the activity signals, and a more sophisticated Gaussian process regression model. We show that the use of overly-simplistic stellar activity models that are not well-motivated physically can lead to spurious `detections of planetary signals that are almost certainly not real. We also reveal some difficulties inherent in parameter and model inference in cases where multiple planetary signals may be present. Our study thus underlines the importance both of exploring a variety of competing models and of understanding the limitations and precision settings of ones sampling algorithm. We also show that at least in the case of HD 13808, we always arrive at consistent conclusions about two particular signals present in the RV, regardless of the stellar activity model we adopt; these two signals correspond to the previously-reported though unconfirmed planet candidate signals. Given the robustness and precision with which we can characterize these two signals, we deem them secure planet detections. In particular, we find two planets orbiting HD 13808 at distances of 0.11, 0.26 AU with periods of 14.2, 53.8 d, and minimum masses of 11, 10 Earth masses.
We present new 1--1.25 micron (z and J band) Subaru/IRCS and 2 micron (K band) VLT/NaCo data for HR 8799 and a rereduction of the 3--5 micron MMT/Clio data first presented by Hinz et al. (2010). Our VLT/NaCo data yields a detection of a fourth planet at a projected separation of ~ 15 AU -- HR 8799e. We also report new, albeit weak detections of HR 8799b at 1.03 microns and 3.3 microns. Empirical comparisons to field brown dwarfs show that at least HR 8799b and HR8799c, and possibly HR 8799d, have near-to-mid IR colors/magnitudes significantly discrepant from the L/T dwarf sequence. Standard cloud deck atmosphere models appropriate for brown dwarfs provide only (marginally) statistically meaningful fits to HR 8799b and c for unphysically small radii. Models with thicker cloud layers not present in brown dwarfs reproduce the planets SEDs far more accurately and without the need for rescaling the planets radii. Our preliminary modeling suggests that HR 8799b has log(g) = 4--4.5, Teff = 900K, while HR 8799c, d, and (by inference) e have log(g) = 4--4.5, Teff = 1000--1200K. Combining results from planet evolution models and new dynamical stability limits implies that the masses of HR 8799b, c, d, and e are 6--7 Mj, 7--10 Mj, 7--10 Mj and 7--10 Mj. Patchy cloud prescriptions may provide even better fits to the data and may lower the estimated surface gravities and masses. Finally, contrary to some recent claims, forming the HR 8799 planets by core accretion is still plausible, although such systems are likely rare.
New photometric space missions to detect and characterise transiting exoplanets are focusing on bright stars to obtain high cadence, high signal-to-noise light curves. Since these missions will be sensitive to stellar oscillations and granulation eve n for dwarf stars, they will be limited by stellar variability. We tested the performance of Gaussian process (GP) regression on the characterisation of transiting planets, and in particular to determine how many components of variability are necessary to describe high cadence, high signal-to-noise light curves expected from CHEOPS and PLATO. We found that the best GP stellar variability model contains four to five variability components: one stellar oscillation component, two to four granulation components, and/or one rotational modulation component. This high number of components is in contrast with the one-component GP model (1GP) commonly used in the literature for transit characterisation. Therefore, we compared the performance of the best multi-component GP model with the 1GP model in the derivation of transit parameters of simulated transits. We found that for Jupiter- and Neptune-size planets the best multi-component GP model is slightly better than the 1GP model, and much better than the non-GP model that gives biased results. For Earth-size planets, the 1GP model fails to retrieve the transit because it is a poor description of stellar activity. The non-GP model gives some biased results and the best multi-component GP is capable of retrieving the correct transit model parameters. We conclude that when characterising transiting exoplanets with high signal-to-noise ratios and high cadence light curves, we need models that couple the description of stellar variability with the transits analysis, like GPs. Moreover, for Earth-like exoplanets a better description of stellar variability improves the planetary characterisation.
Protoplanetary disks contain structures such as gaps, rings, and spirals, which are thought to be produced by the interaction between the disk and embedded protoplanets. However, only a few planet candidates are found orbiting within protoplanetary d isks, and most of them are being challenged as having been confused with disk features. We aim to discover more proto-planetary candidates with MUSE, with a secondary aim of improving the high-resolution spectral differential imaging (HRSDI) technique by analyzing the instrumental residuals of MUSE. We analyzed MUSE observations of five young stars and applied the HRSDI technique to perform high-contrast imaging. With a 30 min integration time, MUSE can reach 5$sigma$ detection limits in apparent H$alpha$ line flux down to 10$^{-14}$ and 10$^{-15}$ erg s$^{-1}$ cm$^{-2}$ at 0.075 and 0.25, respectively. In addition to PDS 70 b and c, we did not detect any clear accretion signatures in PDS 70, J1850-3147, and V1094 Sco down to 0.1. MUSE avoids the small sample statistics problem by measuring the noise characteristics in the spatial direction at multiple wavelengths. We detected two asymmetric atomic jets in HD 163296. The HRSDI technique when applied to MUSE data allows us to reach the photon noise limit at small separations (i.e., < 0.5). With a higher spectral resolution, MUSE can achieve fainter detection limits in apparent line flux than SPHERE/ZIMPOL by a factor of $sim$5. MUSE has some instrumental issues that limit the contrast that appear in cases with strong point sources, which can be either a spatial point source due to high Strehl observations or a spectral point source due to a high line-to-continuum ratio. We modified the HRSDI technique to better handle the instrumental artifacts and improve the detection limits.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا