ﻻ يوجد ملخص باللغة العربية
The triangle covering number of a graph is the minimum number of vertices that hit all triangles. Given positive integers $s,t$ and an $n$-vertex graph $G$ with $lfloor n^2/4 rfloor +t$ edges and triangle covering number $s$, we determine (for large $n$) sharp bounds on the minimum number of triangles in $G$ and also describe the extremal constructions. Similar results are proved for cliques of larger size and color critical graphs. This extends classical work of Rademacher, ErdH os, and Lovasz-Simonovits whose results apply only to $s le t$. Our results also address two conjectures of Xiao and Katona. We prove one of them and give a counterexample and prove a modified version of the other conjecture.
Generalized Turan problems have been a central topic of study in extremal combinatorics throughout the last few decades. One such problem is maximizing the number of cliques of size $t$ in a graph of a fixed order that does not contain any path (or c
Extending the concept of Ramsey numbers, Erd{H o}s and Rogers introduced the following function. For given integers $2le s<t$ let $$ f_{s,t}(n)=min {max {|W| : Wsubseteq V(G) {and} G[W] {contains no} K_s} }, $$ where the minimum is taken over all $K_
Given a sequence $mathbf{k} := (k_1,ldots,k_s)$ of natural numbers and a graph $G$, let $F(G;mathbf{k})$ denote the number of colourings of the edges of $G$ with colours $1,dots,s$ such that, for every $c in {1,dots,s}$, the edges of colour $c$ conta
In 1935, ErdH{o}s and Szekeres proved that $(m-1)(k-1)+1$ is the minimum number of points in the plane which definitely contain an increasing subset of $m$ points or a decreasing subset of $k$ points (as ordered by their $x$-coordinates). We consider
Let $textbf{k} := (k_1,ldots,k_s)$ be a sequence of natural numbers. For a graph $G$, let $F(G;textbf{k})$ denote the number of colourings of the edges of $G$ with colours $1,dots,s$ such that, for every $c in {1,dots,s}$, the edges of colour $c$ con