ترغب بنشر مسار تعليمي؟ اضغط هنا

ErdH{o}s-Szekeres On-Line

87   0   0.0 ( 0 )
 نشر من قبل Luke Nelsen
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In 1935, ErdH{o}s and Szekeres proved that $(m-1)(k-1)+1$ is the minimum number of points in the plane which definitely contain an increasing subset of $m$ points or a decreasing subset of $k$ points (as ordered by their $x$-coordinates). We consider their result from an on-line game perspective: Let points be determined one by one by player A first determining the $x$-coordinate and then player B determining the $y$-coordinate. What is the minimum number of points such that player A can force an increasing subset of $m$ points or a decreasing subset of $k$ points? We introduce this as the ErdH{o}s-Szekeres on-line number and denote it by $text{ESO}(m,k)$. We observe that $text{ESO}(m,k) < (m-1)(k-1)+1$ for $m,k ge 3$, provide a general lower bound for $text{ESO}(m,k)$, and determine $text{ESO}(m,3)$ up to an additive constant.

قيم البحث

اقرأ أيضاً

57 - Eva Czabarka , Zhiyu Wang 2018
We provide a cyclic permutation analogue of the ErdH os-Szekeres theorem. In particular, we show that every cyclic permutation of length $(k-1)(ell-1)+2$ has either an increasing cyclic sub-permutation of length $k+1$ or a decreasing cyclic sub-permu tation of length $ell+1$, and show that the result is tight. We also characterize all maximum-length cyclic permutations that do not have an increasing cyclic sub-permutation of length $k+1$ or a decreasing cyclic sub-permutation of length $ell+1$.
102 - Xizhi Liu , Dhruv Mubayi 2020
The triangle covering number of a graph is the minimum number of vertices that hit all triangles. Given positive integers $s,t$ and an $n$-vertex graph $G$ with $lfloor n^2/4 rfloor +t$ edges and triangle covering number $s$, we determine (for large $n$) sharp bounds on the minimum number of triangles in $G$ and also describe the extremal constructions. Similar results are proved for cliques of larger size and color critical graphs. This extends classical work of Rademacher, ErdH os, and Lovasz-Simonovits whose results apply only to $s le t$. Our results also address two conjectures of Xiao and Katona. We prove one of them and give a counterexample and prove a modified version of the other conjecture.
Generalized Turan problems have been a central topic of study in extremal combinatorics throughout the last few decades. One such problem is maximizing the number of cliques of size $t$ in a graph of a fixed order that does not contain any path (or c ycle) of length at least a given number. Both of the path-free and cycle-free extremal problems were recently considered and asymptotically solved by Luo. We fully resolve these problems by characterizing all possible extremal graphs. We further extend these results by solving the edge-variant of these problems where the number of edges is fixed instead of the number of vertices. We similarly obtain exact characterization of the extremal graphs for these edge variants.
Robertson and Seymour proved that the family of all graphs containing a fixed graph $H$ as a minor has the ErdH{o}s-Posa property if and only if $H$ is planar. We show that this is no longer true for the edge version of the ErdH{o}s-Posa property, an d indeed even fails when $H$ is an arbitrary subcubic tree of large pathwidth or a long ladder. This answers a question of Raymond, Sau and Thilikos.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا