ترغب بنشر مسار تعليمي؟ اضغط هنا

Installation and Commissioning of the GlueX DIRC

76   0   0.0 ( 0 )
 نشر من قبل Wenliang Li
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The GlueX experiment takes place in experimental Hall D at Jefferson Lab (JLab). With a linearly polarized photon beam of up to 12 GeV energy, GlueX is a dedicated experiment to search for hybrid mesons via photoproduction reactions. The low-intensity (Phase I) of GlueX was recently completed; the high-intensity (Phase II) started in 2020 including an upgraded particle identification system, known as the DIRC (Detection of Internally Reflected Cherenkov light), utilizing components from the decommissioned BaBar experiment. The identification and separation of the kaon final states will significantly enhance the GlueX physics program, by adding the capability of accessing the strange quark flavor content of conventional (and potentially hybrid) mesons. In these proceedings, we report that the installation and commissioning of the DIRC detector has been successfully completed.



قيم البحث

اقرأ أيضاً

The GlueX experiment is located in experimental Hall D at Jefferson Lab (JLab) and provides a unique capability to search for hybrid mesons in high-energy photoproduction, utilizing a ~9 GeV linearly polarized photon beam. The initial, low-intensity phase of GlueX was recently completed and a high-intensity phase has begun in 2020 which includes an upgraded kaon identification system, known as the DIRC (Detection of Internally Reflected Cherenkov light), utilizing components from the decommissioned BaBar DIRC. The identification of kaon final states will significantly enhance the GlueX physics program, to aid in inferring the quark flavor content of conventional (and potentially hybrid) mesons. In these proceedings we describe the installation of the GlueX DIRC and the analysis of initial commissioning data
72 - Y. Maeda 2017
The Time-Of-Propagation (TOP) counter is a novel device for particle identification for the barrel region of the Belle II experiment, where, information of Cherenkov light propagation time is used to reconstruct its ring image. We successfully finish ed the detector production and installation to the Belle II structure in 2016. Commissioning of the installed detector has been on going, where the detector operation in the 1.5-T magnetic field was studied. Although we found a problem where photomultipliers were mechanically moved due to the magnetic force, it was immediately fixed. Performance was evaluated with cosmic ray data, the number of photon hits were confirmed to be consistent with simulation within 15-30%.
The GlueX experiment at Jefferson Lab has been designed to study photoproduction reactions with a 9-GeV linearly polarized photon beam. The energy and arrival time of beam photons are tagged using a scintillator hodoscope and a scintillating fiber ar ray. The photon flux is determined using a pair spectrometer, while the linear polarization of the photon beam is determined using a polarimeter based on triplet photoproduction. Charged-particle tracks from interactions in the central target are analyzed in a solenoidal field using a central straw-tube drift chamber and six packages of planar chambers with cathode strips and drift wires. Electromagnetic showers are reconstructed in a cylindrical scintillating fiber calorimeter inside the magnet and a lead-glass array downstream. Charged particle identification is achieved by measuring energy loss in the wire chambers and using the flight time of particles between the target and detectors outside the magnet. The signals from all detectors are recorded with flash ADCs and/or pipeline TDCs into memories allowing trigger decisions with a latency of 3.3 $mu$s. The detector operates routinely at trigger rates of 40 kHz and data rates of 600 megabytes per second. We describe the photon beam, the GlueX detector components, electronics, data-acquisition and monitoring systems, and the performance of the experiment during the first three years of operation.
79 - G. Schepers , A. Ali , A. Belias 2019
The Barrel DIRC of the PANDA experiment at FAIR will cleanly separate pions from kaons for the physics program of PANDA. Innovative solutions for key components of the detector sitting in the strong magnetic field of the compact PANDA target spectrom eter as well as two reconstruction methods were developed in an extensive prototype program. The technical design and present results from the test beam campaigns at the CERN PS in 2017 and 2018 are discussed.
We propose to enhance the kaon identification capabilities of the GlueX detector by constructing an FDIRC (Focusing Detection of Internally Reflected Cherenkov) detector utilizing the decommissioned BaBar DIRC components. The GlueX FDIRC would signif icantly enhance the GlueX physics program by allowing one to search for and study hybrid mesons decaying into kaon final states. Such systematic studies of kaon final states are essential for inferring the quark flavor content of hybrid and conventional mesons. The GlueX FDIRC would reuse one-third of the synthetic fused silica bars that were utilized in the BaBar DIRC. A new focussing photon camera, read out with large area photodetectors, would be developed. We propose operating the enhanced GlueX detector in Hall D for a total of 220 days at an average intensity of 5x10^7 {gamma}/s, a program that was conditionally approved by PAC39
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا