ﻻ يوجد ملخص باللغة العربية
Ambient backscatter communications (AmBackComs) have been recognized as a spectrum- and energy-efficient technology for Internet of Things, as it allows passive backscatter devices (BDs) to modulate their information into the legacy signals, e.g., cellular signals, and reflect them to their associated receivers while harvesting energy from the legacy signals to power their circuit operation. {color{black} However, the co-channel interference between the backscatter link and the legacy link and the non-linear behavior of energy harvesters at the BDs have largely been ignored in the performance analysis of AmBackComs. Taking these two aspects, this paper provides a comprehensive outage performance analysis for an AmBackCom system with multiple backscatter links}, where one of the backscatter links is opportunistically selected to leverage the legacy signals transmitted in a given resource block. For any selected backscatter link, we propose an adaptive reflection coefficient (RC), which is adapted to the non-linear energy harvesting (EH) model and the location of the selected backscatter link, to minimize the outage probability of the backscatter link. In order to study the impact of co-channel interference on both backscatter and legacy links, for a selected backscatter link, we derive the outage probabilities for the legacy link and the backscatter link. Furthermore, we study the best and worst outage performances for the backscatter system where the selected backscatter link maximizes or minimizes the signal-to-interference-plus noise ratio (SINR) at the backscatter receiver. We also study the best and worst outage performances for the legacy link where the selected backscatter link results in the lowest and highest co-channel interference to the legacy receiver, respectively.
We consider an ambient backscatter communication (AmBC) system aided by an intelligent reflecting surface (IRS). The optimization of the IRS to assist AmBC is extremely difficult when there is no prior channel knowledge, for which no design solutions
In this paper, a backscatter cooperation (BC) scheme is proposed for non-orthogonal multiple access (NOMA) downlink transmission. The key idea is to enable one user to split and then backscatter part of its received signals to improve the reception a
Ambient backscatter communication (AmBC) enables radio-frequency (RF) powered backscatter devices (BDs) (e.g., sensors, tags) to modulate their information bits over ambient RF carriers in an over-the-air manner. This technology also called modulatio
Existing studies about ambient backscatter communication mostly assume flat-fading channels. However, frequency-selective channels widely exist in many practical scenarios. Therefore, this paper investigates ambient backscatter communication systems
In this paper, we study the outage performance of simultaneous wireless information and power transfer (SWIP- T) based three-step two-way decode-and-forward (DF) relay networks, where both power-splitting (PS) and harvest-then-forward are employed. I