ﻻ يوجد ملخص باللغة العربية
Quantum state transformations that are robust to experimental imperfections are important for applications in quantum information science and quantum sensing. Counterdiabatic (CD) approaches, which use knowledge of the underlying system Hamiltonian to actively correct for diabatic effects, are powerful tools for achieving simultaneously fast and stable state transformations. Protocols for CD driving have thus far been limited in their experimental implementation to discrete systems with just two or three levels, as well as bulk systems with scaling symmetries. Here, we extend the tool of CD control to a discrete synthetic lattice system composed of as many as nine sites. Although this system has a vanishing gap and thus no adiabatic support in the thermodynamic limit, we show that CD approaches can still give a substantial, several order-of-magnitude, improvement in fidelity over naive, fast adiabatic protocols.
Dissipation can serve as a powerful resource for controlling the behavior of open quantum systems.Recently there has been a surge of interest in the influence of dissipative coupling on large quantum systems and, more specifically, how these processe
We present a method of locally inverting the sign of the coupling term in tight-binding systems, by means of inserting a judiciously designed ancillary site and eigenmode matching of the resulting vertex triplet. Our technique can be universally appl
We study the influence of atomic interactions on quantum simulations in momentum-space lattices (MSLs), where driven transitions between discrete momentum states mimic transport between sites of a synthetic lattice. Low energy atomic collisions, whic
We theoretically study the creation of knot structures in the polar phase of spin-1 BECs using the counterdiabatic protocol in an unusual fashion. We provide an analytic solution to the evolution of the external magnetic field that is used to imprint
We propose and study systems of coupled atomic wires in a perpendicular synthetic magnetic field as a platform to realize exotic phases of quantum matter. This includes (fractional) quantum Hall states in arrays of many wires inspired by the pioneeri