ﻻ يوجد ملخص باللغة العربية
Machine learning driven interatomic potentials, including Gaussian approximation potential (GAP) models, are emerging tools for atomistic simulations. Here, we address the methodological question of how one can fit GAP models that accurately predict vibrational properties in specific regions of configuration space, whilst retaining flexibility and transferability to others. We use an adaptive regularization of the GAP fit that scales with the absolute force magnitude on any given atom, thereby exploring the Bayesian interpretation of GAP regularization as an expected error, and its impact on the prediction of physical properties for a material of interest. The approach enables excellent predictions of phonon modes (to within 0.1-0.2 THz) for structurally diverse silicon allotropes, and it can be coupled with existing fitting databases for high transferability. These findings and workflows are expected to be useful for GAP-driven materials modeling more generally.
We demonstrate how machine-learning based interatomic potentials can be used to model guest atoms in host structures. Specifically, we generate Gaussian approximation potential (GAP) models for the interaction of lithium atoms with graphene, graphite
We demonstrate that a high-dimensional neural network potential (HDNNP) can predict the lattice thermal conductivity of semiconducting materials with an accuracy comparable to that of density functional theory (DFT) calculation. After a training proc
In Golds framework of inductive inference, the model of partial learning requires the learner to output exactly one correct index for the target object and only the target object infinitely often. Since infinitely many of the learners hypotheses may
The optimized effective potential (OEP) method presents an unambiguous way to construct the Kohn-Sham potential corresponding to a given diagrammatic approximation for the exchange-correlation functional. The OEP from the random-phase approximation (
Among the transparent conducting oxides, the perovskite barium stannate is most promising for various electronic applications due to its outstanding carrier mobility achieved at room temperature. Most important characteristics however, $i.e.$, its ba