ﻻ يوجد ملخص باللغة العربية
Fractional repetition (FR) codes are a class of repair efficient erasure codes that can recover a failed storage node with both optimal repair bandwidth and complexity. In this paper, we study the minimum distance of FR codes, which is the smallest number of nodes whose failure leads to the unrecoverable loss of the stored file. We consider upper bounds on the minimum distance and present several families of explicit FR codes attaining these bounds. The optimal constructions are derived from regular graphs and combinatorial designs, respectively.
We propose a binary message passing decoding algorithm for product codes based on generalized minimum distance decoding (GMDD) of the component codes, where the last stage of the GMDD makes a decision based on the Hamming distance metric. The propose
We obtain a characterization on self-orthogonality for a given binary linear code in terms of the number of column vectors in its generator matrix, which extends the result of Bouyukliev et al. (2006). As an application, we give an algorithmic method
This short note revisits the problem of designing secure minimum storage regenerating (MSR) codes for distributed storage systems. A secure MSR code ensures that a distributed storage system does not reveal the stored information to a passive eavesdr
Stopping sets play a crucial role in failure events of iterative decoders over a binary erasure channel (BEC). The $ell$-th stopping redundancy is the minimum number of rows in the parity-check matrix of a code, which contains no stopping sets of siz
We consider DNA codes based on the nearest-neighbor (stem) similarity model which adequately reflects the hybridization potential of two DNA sequences. Our aim is to present a survey of bounds on the rate of DNA codes with respect to a thermodynamica