ﻻ يوجد ملخص باللغة العربية
This short note revisits the problem of designing secure minimum storage regenerating (MSR) codes for distributed storage systems. A secure MSR code ensures that a distributed storage system does not reveal the stored information to a passive eavesdropper. The eavesdropper is assumed to have access to the content stored on $ell_1$ number of storage nodes in the system and the data downloaded during the bandwidth efficient repair of an additional $ell_2$ number of storage nodes. This note combines the Gabidulin codes based precoding [18] and a new construction of MSR codes (without security requirements) by Ye and Barg [27] in order to obtain secure MSR codes. Such optimal secure MSR codes were previously known in the setting where the eavesdropper was only allowed to observe the repair of $ell_2$ nodes among a specific subset of $k$ nodes [7, 18]. The secure coding scheme presented in this note allows the eavesdropper to observe repair of any $ell_2$ ouf of $n$ nodes in the system and characterizes the secrecy capacity of linear repairable MSR codes.
In this paper, we revisit the problem of finding the longest systematic-length $k$ for a linear minimum storage regenerating (MSR) code with optimal repair of only systematic part, for a given per-node storage capacity $l$ and an arbitrary number of
The problem of exact-repair regenerating codes against eavesdropping attack is studied. The eavesdropping model we consider is that the eavesdropper has the capability to observe the data involved in the repair of a subset of $ell$ nodes. An $(n,k,d,
This paper aims to go beyond resilience into the study of security and local-repairability for distributed storage systems (DSS). Security and local-repairability are both important as features of an efficient storage system, and this paper aims to u
Cyclic codes, as linear block error-correcting codes in coding theory, play a vital role and have wide applications. Ding in cite{D} constructed a number of classes of cyclic codes from almost perfect nonlinear (APN) functions and planar functions ov
A code construction and repair scheme for optimal functional regeneration of multiple node failures is presented, which is based on stitching together short MDS codes on carefully chosen sets of points lying on a linearized polynomial. The nodes are