ترغب بنشر مسار تعليمي؟ اضغط هنا

Programmable coherent linear quantum operations with high-dimensional optical spatial modes

88   0   0.0 ( 0 )
 نشر من قبل Xue Feng
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A simple and flexible scheme for high-dimensional linear quantum operations on optical transverse spatial modes is demonstrated. The quantum Fourier transformation (QFT) and quantum state tomography (QST) via symmetric informationally complete positive operator-valued measures (SIC POVMs) are implemented with dimensionality of 15. The matrix fidelity of QFT is 0.85, while the statistical fidelity of SIC POVMs and fidelity of QST are ~0.97 and up to 0.853, respectively. We believe that our device has the potential for further exploration of high-dimensional spatial entanglement provided by spontaneous parametric down conversion in nonlinear crystals.

قيم البحث

اقرأ أيضاً

Unitary transformations are the fundamental building blocks of gates and operations in quantum information processing allowing the complete manipulation of quantum systems in a coherent manner. In the case of photons, optical elements that can perfor m unitary transformations are readily available only for some degrees of freedom, e.g. wave plates for polarisation. However for high-dimensional states encoded in the transverse spatial modes of light, performing arbitrary unitary transformations remains a challenging task for both theoretical proposals and actual implementations. Following the idea of multi-plane light conversion, we show that it is possible to perform a broad variety of unitary operations when the number of phase modulation planes is comparable to the number of modes. More importantly, we experimentally implement several high-dimensional quantum gates for up to 5-dimensional states encoded in the full-field mode structure of photons. In particular, we realise cyclic and quantum Fourier transformations, known as Pauli $hat{X}$-gates and Hadamard $hat{H}$-gates, respectively, with an average visibility of more than 90%. In addition, we demonstrate near-perfect unitarity by means of quantum process tomography unveiling a process purity of 99%. Lastly, we demonstrate the benefit of the two independent spatial degrees of freedom, i.e. azimuthal and radial, and implement a two-qubit controlled-NOT quantum operation on a single photon. Thus, our demonstrations open up new paths to implement high-dimensional quantum operations, which can be applied to various tasks in quantum communication, computation and sensing schemes.
Reconfigurable quantum circuits are fundamental building blocks for the implementation of scalable quantum technologies. Their implementation has been pursued in linear optics through the engineering of sophisticated interferometers. While such optic al networks have been successful in demonstrating the control of small-scale quantum circuits, scaling up to larger dimensions poses significant challenges. Here, we demonstrate a potentially scalable route towards reconfigurable optical networks based on the use of a multimode fibre and advanced wavefront-shaping techniques. We program networks involving spatial and polarisation modes of the fibre and experimentally validate the accuracy and robustness of our approach using two-photon quantum states. In particular, we illustrate the reconfigurability of our platform by emulating a tunable coherent absorption experiment. By demonstrating reliable reprogrammable linear transformations, with the prospect to scale, our results highlight the potential of complex media driven by wavefront shaping for quantum information processing.
Engineering quantum operations is one of the main abilities we need for developing quantum technologies and designing new fundamental tests. Here we propose a scheme for realising a controlled operation acting on a travelling quantum field, whose fun ctioning is determined by an input qubit. This study introduces new concepts and methods in the interface of continuous- and discrete-variable quantum optical systems.
By harnessing aspects of quantum mechanics, communication and information processing could be radically transformed. Promising forms of quantum information technology include optical quantum cryptographic systems and computing using photons for quant um logic operations. As with current information processing systems, some form of memory will be required. Quantum repeaters, which are required for long distance quantum key distribution, require optical memory as do deterministic logic gates for optical quantum computing. In this paper we present results from a coherent optical memory based on warm rubidium vapour and show 87% efficient recall of light pulses, the highest efficiency measured to date for any coherent optical memory. We also show storage recall of up to 20 pulses from our system. These results show that simple warm atomic vapour systems have clear potential as a platform for quantum memory.
Quantum key distributions (QKD) systems often rely on polarization of light for encoding, thus limiting the amount of information that can be sent per photon and placing tight bounds on the error that such a system can tolerate. Here we describe a pr oof-of-principle experiment that indicates the feasibility of high-dimensional QKD based on the transverse structure of the light field, allowing for the transfer of more than 1 bit per photon. Our implementation uses the orbital angular momentum (OAM) of photons and the corresponding mutually unbiased basis of angular position (ANG). Our experiment uses a digital micro-mirror device for the rapid generation of OAM and ANG modes at 4 kHz, and a mode sorter capable of sorting single photons based on their OAM and ANG content with a separation efficiency of 93%. Through the use of a 7-dimensional alphabet encoded in the OAM and ANG bases, we achieve a channel capacity of 2.05 bits per sifted photon. Our experiment shows that, in addition to having an increased information capacity, QKD systems based on spatial-mode encoding will be more tolerant to errors and thus more robust against eavesdropping attacks.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا