ﻻ يوجد ملخص باللغة العربية
Quantum key distributions (QKD) systems often rely on polarization of light for encoding, thus limiting the amount of information that can be sent per photon and placing tight bounds on the error that such a system can tolerate. Here we describe a proof-of-principle experiment that indicates the feasibility of high-dimensional QKD based on the transverse structure of the light field, allowing for the transfer of more than 1 bit per photon. Our implementation uses the orbital angular momentum (OAM) of photons and the corresponding mutually unbiased basis of angular position (ANG). Our experiment uses a digital micro-mirror device for the rapid generation of OAM and ANG modes at 4 kHz, and a mode sorter capable of sorting single photons based on their OAM and ANG content with a separation efficiency of 93%. Through the use of a 7-dimensional alphabet encoded in the OAM and ANG bases, we achieve a channel capacity of 2.05 bits per sifted photon. Our experiment shows that, in addition to having an increased information capacity, QKD systems based on spatial-mode encoding will be more tolerant to errors and thus more robust against eavesdropping attacks.
Quantum key distribution (QKD) promises information-theoretically secure communication, and is already on the verge of commercialization. Thus far, different QKD protocols have been proposed theoretically and implemented experimentally [1, 2]. The ne
Inspired by the classical phenomenon of random walk, the concept of quantum walk has emerged recently as a powerful platform for the dynamical simulation of complex quantum systems, entanglement production and universal quantum computation. Such a wi
Standard protocols for quantum key distribution (QKD) require that the sender be able to transmit in two or more mutually unbiased bases. Here, we analyze the extent to which the performance of QKD is degraded by diffraction effects that become relev
Optomechanical systems offer new opportunities in quantum information processing and quantum sensing. Many solid-state quantum devices operate at millikelvin temperatures -- however, it has proven challenging to operate nanoscale optomechanical devic
A simple and flexible scheme for high-dimensional linear quantum operations on optical transverse spatial modes is demonstrated. The quantum Fourier transformation (QFT) and quantum state tomography (QST) via symmetric informationally complete positi