ﻻ يوجد ملخص باللغة العربية
The Bloch theorem mathematically proves that in a periodic crystal, electrons can acquire a negative mass. The present work aims to provide a physical understanding for why this is so. We successively analyze the consequences of the 3-fold orbital valence state coupling to (i) a non-degenerate orbital level in the conduction band, (ii) a 3-fold orbital level in the conduction band, and (iii) spin states through spin-orbit interaction. We show that it is not at all trivial for valence electrons to acquire a negative mass for whatever their momentum with respect to the crystal axes: it is necessary to not only have a coupling to a degenerate orbital conduction level, but also a symmetry breaking of the 3-fold valence subspace by the spin quantization axis, as induced by spin-orbit interaction. Due to the relativistic origin of this interaction, the existence of negative valence masses thus constitutes an unexpected signature of quantum relativity.
To clarify the whole picture of the valence-band structures of prototype ferromagnetic semiconductors (III,Mn)As (III: In and Ga), we perform systematic experiments of the resonant tunneling spectroscopy on [(In_0.53Ga_0.47)_1-x Mn_x]As (x=0.06-0.15)
We address the low-energy effective Hamiltonian of electron doped d0 perovskite semiconductors in cubic and tetragonal phases using the k*p method. The Hamiltonian depends on the spin-orbit interaction strength, on the temperature-dependent tetragona
Controlling the properties of semiconductor/metal interfaces is a powerful method for designing functionality and improving the performance of electrical devices. Recently semiconductor/superconductor hybrids have appeared as an important example whe
The element-specific technique of x-ray magnetic circular dichroism (XMCD) is used to directly determine the magnitude and character of the valence band orbital magnetic moments in (III,Mn)As ferromagnetic semiconductors. A distinct dichroism is obse
We calculate the Overhauser frequency shifts in semiconductor nanostructures resulting from the hyperfine interaction between nonequilibrium electronic spins and nuclear spins. The frequency shifts depend on the electronic local density of states and