ﻻ يوجد ملخص باللغة العربية
A summary of recent results on filamentary transport, mostly obtained in the ASDEX-Upgrade tokamak (AUG), is presented and discussed in an attempt to produce a coherent picture of SOL filamentary transport: A clear correlation is found between L-mode density shoulder formation in the outer midplane and a transition between the sheath limited and the inertial filamentary regimes. Divertor collisionality is found to be the parameter triggering the transition. A clear reduction of the ion temperature takes place in the far SOL after the transition, both for the background and the filaments. This coincides with a strong variation of the ion temperature distribution, which deviates from Gaussianity and becomes dominated by a strong peak below $5$ eV. The filament transition mechanism triggered by a critical value of collisionality seems to be generally applicable to inter-ELM H-mode plasmas, although a secondary threshold related to deuterium fueling is observed. EMC3-EIRENE simulations of neutral dynamics show that an ionization front near the main chamber wall is formed after the shoulder formation. Finally, a clear increase of SOL opacity to neutrals is observed associated to the shoulder formation. A common SOL transport framework is proposed account for all these results, and their potential implications for future generation devices are discussed.
The turbulence observed in the scrape-off-layer of a tokamak is often characterized by intermittent events of bursty nature, a feature which raises concerns about the prediction of heat loads on the physical boundaries of the device. It appears thus
Understanding metallic behaviour is still one of the central tasks in Condensed Matter Physics. Recent developments have energized the interest in several modern concepts, such as strange metal, bad metal, and Planckian metal. However, a unified desc
In presence of a static pair of sources, the spectrum of low-lying states of any confining gauge theory in D space-time dimensions is described, at large source separations, by an effective string theory. Recently two important advances improved our
The sustainment of steady-state plasmas in tokamaks requires efficient current drive systems. Lower Hybrid Current Drive (LHCD) is currently the most efficient method to generate a continuous additional off-axis toroidal plasma current as well as red
Since the discovery of iron-based superconductors, a number of theories have been put forward to explain the qualitative origin of pairing, but there have been few attempts to make quantitative, material-specific comparisons to experimental results.