ترغب بنشر مسار تعليمي؟ اضغط هنا

Recent progress on lower hybrid current drive and implications for ITER

112   0   0.0 ( 0 )
 نشر من قبل Julien Hillairet
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Julien Hillairet




اسأل ChatGPT حول البحث

The sustainment of steady-state plasmas in tokamaks requires efficient current drive systems. Lower Hybrid Current Drive (LHCD) is currently the most efficient method to generate a continuous additional off-axis toroidal plasma current as well as reduce the poloidal flux consumption during the plasma current ramp-up phase. The operation of the Tore Supra ITER-like LH launcher has demonstrated the capability to couple LH power at ITER-like power densities with very low reflected power during long pulses. In addition, the installation of eight 700kW/CW klystrons at the LH transmitter has allowed increasing the total LH power in long pulse scenarios. However, in order to achieve pure stationary LH sustained plasmas, some R&D are needed to increase the reliability of all the systems and codes, from the RF sources to the plasma scenario prediction. The CEA/IRFM is addressing some of these issues by leading a R&D program towards an ITER LH system and by the validation of an integrated LH modeling suite of codes. In 2011, the RF design of a mode converter has been validated at low power. A 500 kW/5 s RF window is currently under manufacturing and will be tested at high power in 2012 in collaboration with NFRI. All of this work aims to reduce the operational risks associated with the ITER steady-state operations.

قيم البحث

اقرأ أيضاً

A new synergy mechanism between Ohkawa current drive (OKCD) of electron cyclotron (EC) waves and lower hybrid current drive (LHCD) is discovered and discussed. And the methodology to achieve this synergy effect is also introduced. Improvement of OKCD efficiency can be achieved up to a factor of ~ 2.5 in far off-axis radial region (r{ho} > 0.6) of tokamak plasmas. Making EC wave heating the electrons of co-Ip direction and LH wave heating the electrons of counter-Ip direction, the mechanism of this new synergy effect comes from the results of electron trapping and detrapping processes. The OKCD makes the low speed barely passing electrons to be trapped (trapping process), the LHCD pulls some of the high speed barely trapped electrons out of the trapped region in velocity space (detrapping process) and accelerates the detrapped electrons to a higher speed.
13MW of electron cyclotron current drive (ECCD) power deposited inside the q = 1 surface is likely to reduce the sawtooth period in ITER baseline scenario below the level empirically predicted to trigger neo-classical tearing modes (NTMs). However, s ince the ECCD control scheme is solely predicated upon changing the local magnetic shear, it is prudent to plan to use a complementary scheme which directly decreases the potential energy of the kink mode in order to reduce the sawtooth period. In the event that the natural sawtooth period is longer than expected, due to enhanced alpha particle stabilisation for instance, this ancillary sawtooth control can be provided from > 10MW of ion cyclotron resonance heating (ICRH) power with a resonance just inside the q = 1 surface. Both ECCD and ICRH control schemes would benefit greatly from active feedback of the deposition with respect to the rational surface. If the q = 1 surface can be maintained closer to the magnetic axis, the efficacy of ECCD and ICRH schemes significantly increases, the negative effect on the fusion gain is reduced, and off-axis negative-ion neutral beam injection (NNBI) can also be considered for sawtooth control. Consequently, schemes to reduce the q = 1 radius are highly desirable, such as early heating to delay the current penetration and, of course, active sawtooth destabilisation to mediate small frequent sawteeth and retain a small q = 1 radius.
We present recent results of the NNPDF collaboration on a full DIS analysis of Parton Distribution Functions (PDFs). Our method is based on the idea of combining a Monte Carlo sampling of the probability measure in the space of PDFs with the use of n eural networks as unbiased universal interpolating functions. The general structure of the project and the features of the fit are described and compared to those of the traditional approaches.
92 - I. E. Ochs , N. J. Fisch 2021
In the classic Landau damping initial value problem, where a planar electrostatic wave transfers energy and momentum to resonant electrons, a recoil reaction occurs in the nonresonant particles to ensure momentum conservation. To explain how net curr ent can be driven in spite of this conservation, the literature often appeals to mechanisms that transfer this nonresonant recoil momentum to ions, which carry negligible current. However, this explanation does not allow the transport of net charge across magnetic field lines, precluding ExB rotation drive. Here, we show that in steady state, this picture of current drive is incomplete. Using a simple Fresnel model of the plasma, we show that for lower hybrid waves, the electromagnetic energy flux (Poynting vector) and momentum flux (Maxwell stress tensor) associated with the evanescent vacuum wave, become the Minkowski energy flux and momentum flux in the plasma, and are ultimately transferred to resonant particles. Thus, the torque delivered to the resonant particles is ultimately supplied by the electromagnetic torque from the antenna, allowing the nonresonant recoil response to vanish and rotation to be driven. We present a warm fluid model that explains how this momentum conservation works out locally, via a Reynolds stress that does not appear in the 1D initial value problem. This model is the simplest that can capture both the nonresonant recoil reaction in the initial-value problem, and the absence of a nonresonant recoil in the steady-state boundary value problem, thus forbidding rotation drive in the former while allowing it in the latter.
222 - Julien Hillairet 2015
The nuclear fusion research goal is to demonstrate the feasibility of fusion power for peaceful purposes. In order to achieve the conditions similar to those expected in an electricity-generating fusion power plant, plasmas with a temperature of seve ral hundreds of millions of degrees must be generated and sustained for long periods. For this purpose, RF antennas delivering multi-megawatts of power to magnetized confined plasma are commonly used in experimental tokamaks. In the gigahertz range of frequencies, high power phased arrays known as Lower Hybrid (LH) antennas are used to extend the plasma duration. This paper reviews some of the technological aspects of the LH antennas used in the Tore Supra tokamak and presents the current design of a proposed 20 MW LH system for the international experiment ITER.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا