ﻻ يوجد ملخص باللغة العربية
NiGa$_2$S$_4$ is a triangular lattice S=1 system with strong two-dimensionality of the lattice, actively discussed as a candidate to host spin-nematic order brought about by strong quadrupole coupling. Using Raman scattering spectroscopy we identify a phonon of E$_g$ symmetry which can modulate magnetic exchange $J_1$ and produce quadrupole coupling. Additionally, our Raman scattering results demonstrate a loss of local inversion symmetry on cooling, which we associate with sulfur vacancies. This will lead to disordered Dzyaloshinskii-Moriya interactions, which can prevent long range magnetic order. Using magnetic Raman scattering response we identify 160~K as a temperature of an upturn of magnetic correlations. The temperature below 160~K, but above 50~K where antiferromagnetic magnetic start to increase, is a candidate for spin-nematic regime.
The crystal structure and magnetic correlations in triangular antiferromagnet FeGa$_2$S$_4$ are studied by x-ray diffraction, magnetic susceptibility, neutron diffraction and neutron inelastic scattering. We report significant mixing at the cation si
Nonmagnetic impurity effects of the spin disordered state in the triangular antiferromagnet NiGa$_2$S$_4$ was studied through magnetic and thermal measurements for Ni$_{1-x}$Zn$_x$Ga$_2$S$_4$ (0.0le xle 0.3). Only 1 % substitution is enough to strong
We report on high-field electron spin resonance (ESR) studies of magnetic excitations in the spin-1/2 triangular-lattice antiferromagnet Cs$_2$CuBr$_4$. Frequency-field diagrams of ESR excitations are measured for different orientations of magnetic f
Recently, several putative quantum spin liquid (QSL) states were discovered in ${tilde S} = 1/2$ rare-earth based triangular-lattice antiferromagnets (TLAF) with the delafossite structure. A way to clarify the origin of the QSL state in these systems
Quantum triangular-lattice antiferromagnets are important prototype systems to investigate phenomena of the geometrical frustration in condensed matter. Apart from highly unusual magnetic properties, they possess a rich phase diagram (ranging from an