ترغب بنشر مسار تعليمي؟ اضغط هنا

Hadwiger meets Cayley

66   0   0.0 ( 0 )
 نشر من قبل Adam Kabela
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We show that every connected $k$-chromatic graph contains at least $k^{k-2}$ spanning trees.

قيم البحث

اقرأ أيضاً

86 - T.-Q. Wang , X.-J. Wang 2021
Hadwiger Conjecture has been an open problem for over a half century1,6, which says that there is at most a complete graph Kt but no Kt+1 for every t-colorable graph. A few cases of Hadwiger Conjecture, such as 1, 2, 3, 4, 5, 6-colorable graphs have been completely proved to convince all1-5, but the proofs are tremendously difficult for over the 5-colorable graph6,7. Although the development of graph theory inspires scientists to understand graph coloring deeply, it is still an open problem for over 7-colorable graphs6,7. Therefore, we put forward a brand new chromatic graph configuration and show how to describe the graph coloring issues in chromatic space. Based on this idea, we define a chromatic plane and configure the chromatic coordinates in Euler space. Also, we find a method to prove Hadwiger Conjecture for every 8-coloring graph feasible.
In this paper we study finite groups which have Cayley isomorphism property with respect to Cayley maps, CIM-groups for a brief. We show that the structure of the CIM-groups is very restricted. It is described in Theorem~ref{111015a} where a short li st of possible candidates for CIM-groups is given. Theorem~ref{111015c} provides concrete examples of infinite series of CIM-groups.
246 - Matthew Wales 2021
The Hadwiger number $h(G)$ is the order of the largest complete minor in $G$. Does sufficient Hadwiger number imply a minor with additional properties? In [2], Geelen et al showed $h(G)geq (1+o(1))ctsqrt{ln t}$ implies $G$ has a bipartite subgraph with Hadwiger number at least $t$, for some explicit $csim 1.276dotsc$. We improve this to $h(G) geq (1+o(1))tsqrt{log_2 t}$, and provide a construction showing this is tight. We also derive improved bounds for the topological minor variant of this problem.
A graph $G$ admitting a group $H$ of automorphisms acting semi-regularly on the vertices with exactly two orbits is called a {em bi-Cayley graph/} over $H$. Such a graph $G$ is called {em normal/} if $H$ is normal in the full automorphism group of $G $, and {em normal edge-transitive/} if the normaliser of $H$ in the full automorphism group of $G$ is transitive on the edges of $G$. % In this paper, we give a characterisation of normal edge-transitive bi-Cayley graphs, %which form an important subfamily of bi-Cayley graphs, and in particular, we give a detailed description of $2$-arc-transitive normal bi-Cayley graphs. Using this, we investigate three classes of bi-Cayley graphs, namely those over abelian groups, dihedral groups and metacyclic $p$-groups. We find that under certain conditions, `normal edge-transitive is the same as `normal for graphs in these three classes. As a by-product, we obtain a complete classification of all connected trivalent edge-transitive graphs of girth at most $6$, and answer some open questions from the literature about $2$-arc-transitive, half-arc-transitive and semisymmetric graphs.
Following a problem posed by Lovasz in 1969, it is believed that every connected vertex-transitive graph has a Hamilton path. This is shown here to be true for cubic Cayley graphs arising from groups having a $(2,s,3)$-presentation, that is, for grou ps $G=la a,b| a^2=1, b^s=1, (ab)^3=1, etc. ra$ generated by an involution $a$ and an element $b$ of order $sgeq3$ such that their product $ab$ has order 3. More precisely, it is shown that the Cayley graph $X=Cay(G,{a,b,b^{-1}})$ has a Hamilton cycle when $|G|$ (and thus $s$) is congruent to 2 modulo 4, and has a long cycle missing only two vertices (and thus necessarily a Hamilton path) when $|G|$ is congruent to 0 modulo 4.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا