ﻻ يوجد ملخص باللغة العربية
Let $E$ be an elliptic curve, with identity $O$, and let $C$ be a cyclic subgroup of odd order $N$, over an algebraically closed field $k$ with $operatorname{char} k mid N$. For $P in C$, let $s_P$ be a rational function with divisor $N cdot P - N cdot O$. We ask whether the $N$ functions $s_P$ are linearly independent. For generic $(E,C)$, we prove that the answer is yes. We bound the number of exceptional $(E,C)$ when $N$ is a prime by using the geometry of the universal generalized elliptic curve over $X_1(N)$. The problem can be recast in terms of sections of an arbitrary degree $N$ line bundle on $E$.
We discuss a non-computational elementary approach to a well-known criterion of divisibility by 2 in the group of rational points on an elliptic curve.
A cycle of elliptic curves is a list of elliptic curves over finite fields such that the number of points on one curve is equal to the size of the field of definition of the next, in a cyclic way. We study cycles of elliptic curves in which every cur
We prove new results on splitting Brauer classes by genus 1 curves, settling in particular the case of degree 7 classes over global fields. Though our method is cohomological in nature, and proceeds by considering the more difficult problem of splitt
We prove two theorems concerning isogenies of elliptic curves over function fields. The first one describes the variation of the height of the $j$-invariant in an isogeny class. The second one is an isogeny estimate, providing an explicit bound on th
This is an introduction to a probabilistic model for the arithmetic of elliptic curves, a model developed in a series of articles of the author with Bhargava, Kane, Lenstra, Park, Rains, Voight, and Wood. We discuss the theoretical evidence for the m