ﻻ يوجد ملخص باللغة العربية
We explore the relation between the stellar mass surface density and the mass surface density of molecular hydrogen gas in twelve nearby molecular clouds that are located at $<$1.5 kpc distance. The sample clouds span an order of magnitude range in mass, size, and star formation rates. We use thermal dust emission from $Herschel$ maps to probe the gas surface density and the young stellar objects from the most recent $Spitzer$ Extended Solar Neighborhood Archive (SESNA) catalog to probe the stellar surface density. Using a star-sampled nearest neighbor technique to probe the star-gas surface density correlations at the scale of a few parsecs, we find that the stellar mass surface density varies as a power-law of the gas mass surface density, with a power-law index of $sim$2 in all the clouds. The consistent power-law index implies that star formation efficiency is directly correlated with gas column density, and no gas column density threshold for star formation is observed. We compare the observed correlations with the predictions from an analytical model of thermal fragmentation, and with the synthetic observations of a recent hydrodynamic simulation of a turbulent star-forming molecular cloud. We find that the observed correlations are consistent for some clouds with the thermal fragmentation model and can be reproduced using the hydrodynamic simulations.
The SFiNCs (Star Formation in Nearby Clouds) project is an X-ray/infrared study of the young stellar populations in 22 star forming regions with distances <=1 kpc designed to extend our earlier MYStIX survey of more distant clusters. Our central goal
We test some ideas for star formation relations against data on local molecular clouds. On a cloud by cloud basis, the relation between the surface density of star formation rate and surface density of gas divided by a free-fall time, calculated from
We study the star formation (SF) law in 12 Galactic molecular clouds with ongoing high-mass star formation (HMSF) activity, as traced by the presence of a bright IRAS source and other HMSF tracers. We define the molecular cloud (MC) associated to eac
It remains a major challenge to derive a theory of cloud-scale ($lesssim100$ pc) star formation and feedback, describing how galaxies convert gas into stars as a function of the galactic environment. Progress has been hampered by a lack of robust emp
The star formation in molecular clouds is inefficient. The ionizing EUV radiation ($h u geq 13.6$ eV) from young clusters has been considered as a primary feedback effect to limit the star formation efficiency (SFE). We here focus on effects of the