ترغب بنشر مسار تعليمي؟ اضغط هنا

Factories of CO-dark gas: molecular clouds with limited star formation efficiencies by FUV feedback

71   0   0.0 ( 0 )
 نشر من قبل Mutsuko Inoguchi
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The star formation in molecular clouds is inefficient. The ionizing EUV radiation ($h u geq 13.6$ eV) from young clusters has been considered as a primary feedback effect to limit the star formation efficiency (SFE). We here focus on effects of the stellar FUV radiation (6 eV $leq h u leq$ 13.6 eV) during the cloud disruption stage. The FUV radiation may further reduce the SFE via photoelectric heating, and it also affects the chemical states of the gas that is not converted to stars (cloud remnants) via photodissociation of molecules. We have developed a one-dimensional semi-analytic model which follows the evolution of both the thermal and chemical structure of a photodissociation region (PDR) during the dynamical expansion of an HII region. We investigate how the FUV feedback limits the SFE, supposing that the star formation is quenched in the PDR where the temperature is above a threshold value (e.g., 100K). Our model predicts that the FUV feedback contributes to reduce the SFEs for the massive ($M_{rm cl} gtrsim 10^5 M_{odot}$) clouds with the low surface densities ($Sigma_{rm cl} lesssim 100$ M$_{odot}$pc$^{-2}$). Moreover, we show that a large part of the H$_2$ molecular gas contained in the cloud remnants should be CO-dark under the FUV feedback for a wide range of cloud properties. Therefore, the dispersed molecular clouds are potential factories of the CO-dark gas, which returns into the cycle of the interstellar medium.



قيم البحث

اقرأ أيضاً

Observations find a median star formation efficiency per free-fall time in Milky Way Giant Molecular Clouds (GMCs) on the order of $epsilon_{rm ff}sim 1%$ with dispersions of $sim0.5,{rm dex}$. The origin of this scatter in $epsilon_{rm ff}$ is still debated and difficult to reproduce with analytical models. We track the formation, evolution and destruction of GMCs in a hydrodynamical simulation of a Milky Way-like galaxy and by deriving cloud properties in an observationally motivated way, measure the distribution of star formation efficiencies which are in excellent agreement with observations. We find no significant link between $epsilon_{rm ff}$ and any measured global property of GMCs (e.g. gas mass, velocity dispersion). Instead, a wide range of efficiencies exist in the entire parameter space. From the cloud evolutionary tracks, we find that each cloud follow a emph{unique} evolutionary path which gives rise to wide diversity in all properties. We argue that it is this diversity in cloud properties, above all else, that results in the dispersion of $epsilon_{rm ff}$.
We investigate the origin of observed local star formation relations using radiative magnetohydrodynamic simulations with self-consistent star formation and ionising radiation. We compare these clouds to the density distributions of local star-formin g clouds and find that the most diffuse simulated clouds match the observed clouds relatively well. We then compute both observationally-motivated and theoretically-motivated star formation efficiencies (SFEs) for these simulated clouds. By including ionising radiation, we can reproduce the observed SFEs in the clouds most similar to nearby Milky Way clouds. For denser clouds, the SFE can approach unity. These observed SFEs are typically 3 to 10 times larger than the total SFEs, i.e. the fraction of the initial cloud mass converted to stars. Converting observed to total SFEs is non-trivial. We suggest some techniques for doing so, though estimate up to a factor of ten error in the conversion.
We present an extremely deep CO(1-0) observation of a confirmed $z=1.62$ galaxy cluster. We detect two spectroscopically confirmed cluster members in CO(1-0) with $S/N>5$. Both galaxies have log(${cal M_{star}}$/msol)$>11$ and are gas rich, with ${ca l M}_{rm mol}$/(${cal M_{star}}+{cal M}_{rm mol}$)$sim 0.17-0.45$. One of these galaxies lies on the star formation rate (SFR)-${cal M_{star}}$ sequence while the other lies an order of magnitude below. We compare the cluster galaxies to other SFR-selected galaxies with CO measurements and find that they have CO luminosities consistent with expectations given their infrared luminosities. We also find that they have comparable gas fractions and star formation efficiencies (SFE) to what is expected from published field galaxy scaling relations. The galaxies are compact in their stellar light distribution, at the extreme end for all high redshift star-forming galaxies. However, their SFE is consistent with other field galaxies at comparable compactness. This is similar to two other sources selected in a blind CO survey of the HDF-N. Despite living in a highly quenched proto-cluster core, the molecular gas properties of these two galaxies, one of which may be in the processes of quenching, appear entirely consistent with field scaling relations between the molecular gas content, stellar mass, star formation rate, and redshift. We speculate that these cluster galaxies cannot have any further substantive gas accretion if they are to become members of the dominant passive population in $z<1$ clusters.
We present a pilot search of CO emission in three H$_2$-absorbing, long-duration gamma-ray burst (GRB) host galaxies at z~2-3. We used the Atacama Large Millimeter/sub-millimeter Array (ALMA) to target the CO(3-2) emission line and report non-detecti ons for all three hosts. These are used to place limits on the host molecular gas masses, assuming a metallicity-dependent CO-to-H$_2$ conversion factor ($alpha_{rm CO}$). We find, $M_{rm mol} < 3.5times 10^{10},M_{odot}$ (GRB,080607), $M_{rm mol} < 4.7times 10^{11},M_{odot}$ (GRB,120815A), and $M_{rm mol} < 8.9times 10^{11},M_{odot}$ (GRB,181020A). The high limits on the molecular gas mass for the latter two cases are a consequence of their low stellar masses $M_star$ ($M_star lesssim 10^{8},M_{odot}$) and low gas-phase metallicities ($Zsim 0.03,Z_{odot}$). The limit on the $M_{rm mol}/M_star$ ratio derived for GRB,080607, however, is consistent with the average population of star-forming galaxies at similar redshifts and stellar masses. We discuss the broader implications for a metallicity-dependent CO-to-H$_2$ conversion factor, and demonstrate that the canonical Galactic $alpha_{rm CO}$, will severely underestimate the actual molecular gas mass for all galaxies at $z>1$ with $M_star < 10^{10},M_odot$. To better quantify this we develop a simple approach to estimate the relevant $alpha_{rm CO}$ factor based only on the redshift and stellar mass of individual galaxies. The elevated conversion factors will make these galaxies appear CO-dark and difficult to detect in emission, as is the case for the majority of GRB hosts. GRB spectroscopy thus offers a complementary approach to identify low-metallicity, star-forming galaxies with abundant molecular gas reservoirs at high redshifts that are otherwise missed by current ALMA surveys.
135 - R. Retes-Romero 2017
We study the star formation (SF) law in 12 Galactic molecular clouds with ongoing high-mass star formation (HMSF) activity, as traced by the presence of a bright IRAS source and other HMSF tracers. We define the molecular cloud (MC) associated to eac h IRAS source using 13CO line emission, and count the young stellar objects (YSOs) within these clouds using GLIMPSE and MIPSGAL 24 micron Spitzer databases.The masses for high luminosity YSOs (Lbol>10~Lsun) are determined individually using Pre Main Sequence evolutionary tracks and the evolutionary stages of the sources, whereas a mean mass of 0.5 Msun was adopted to determine the masses in the low luminosity YSO population. The star formation rate surface density (sigsfr) corresponding to a gas surface density (siggas) in each MC is obtained by counting the number of the YSOs within successive contours of 13CO line emission. We find a break in the relation between sigsfr and siggas, with the relation being power-law (sigsfr ~ siggas^N) with the index N varying between 1.4 and 3.6 above the break. The siggas at the break is between 150-360 Msun/pc^2 for the sample clouds, which compares well with the threshold gas density found in recent studies of Galactic star-forming regions. Our clouds treated as a whole lie between the Kennicutt (1998) relation and the linear relation for Galactic and extra-galactic dense star-forming regions. We find a tendency for the high-mass YSOs to be found preferentially in dense regions at densities higher than 1200 Msun/pc^2 (~0.25 g/cm^2).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا