ﻻ يوجد ملخص باللغة العربية
In this paper we study the light bending caused by a slowly rotating source in the context of quadratic theories of gravity, in which the Einstein--Hilbert action is extended by additional terms quadratic in the curvature tensors. The deflection angle is computed employing the method based on the Gauss--Bonnet theorem and working in the approximation of a weak lens; also, we assume that the source and observer are at an infinite distance. The formalism presented is very general and applies to any spacetime metric in the limit of weak gravitational field and slow rotation. We find the explicit formula for the deflection angle for several local and nonlocal theories, and also discuss some phenomenological implications.
We show that in the weak field limit the light deflection alone cannot distinguish between different $R + F[g(square)R]$ models of gravity, where $F$ and $g$ are arbitrary functions. This does not imply, however, that in all these theories an observe
Using gravitational wave observations to search for deviations from general relativity in the strong-gravity regime has become an important research direction. Chern Simons (CS) gravity is one of the most frequently studied parity-violating models of
We study isotropic and slowly-rotating stars made of dark energy adopting the extended Chaplygin equation-of-state. We compute the moment of inertia as a function of the mass of the stars, both for rotating and non-rotating objects. The solution for
We construct slowly rotating black-hole solutions of Einsteinian cubic gravity (ECG) in four dimensions with flat and AdS asymptotes. At leading order in the rotation parameter, the only modification with respect to the static case is the appearance
In this paper we will provide a non-singular rotating space time metric for a ghost free infinite derivative theory of gravity. We will provide the predictions for the Lense-Thirring effect for a slowly rotating system, and how it is compared with that from general relativity.