ترغب بنشر مسار تعليمي؟ اضغط هنا

Remotely pumped GHz antibunched emission from single exciton centers in GaAs

65   0   0.0 ( 0 )
 نشر من قبل Mingyun Yuan
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Quantum communication networks require on-chip transfer and manipulation of single particles as well as their interconversion to single photons for long-range information exchange. Flying excitons propelled by GHz surface acoustic waves (SAWs) are outstanding messengers to fulfill these requirements. Here, we demonstrate the acoustic manipulation of single exciton centers consisting of individual excitons bound to shallow impurities centers embedded in a semiconductor quantum well. Time-resolved photoluminescence studies show that the emission intensity and energy from these centers oscillate at the SAW frequency of 3.5 GHz. Furthermore, these centers can be remotely pumped via acoustic transport of flying excitons along a quantum well channel over several microns. Time correlation studies reveal that the centers emit anti-bunched light, thus acting as single-photon sources operating at GHz frequencies. Our results pave the way for the exciton-based on-demand manipulation and on-chip transfer of single excitons at microwave frequencies with a natural photonic interface.

قيم البحث

اقرأ أيضاً

We report on the selective excitation of single impurity-bound exciton states in a GaAs double quantum well (DQW). The structure consists of two quantum wells (QWs) coupled by a thin tunnel barrier. The DQW is subject to a transverse electric field t o create spatially indirect inter-QW excitons with electrons and holes located in different QWs. We show that the presence of intra-QW charged excitons (trions) blocks carrier tunneling across the barrier to form indirect excitons, thus opening a gap in their emission spectrum. This behavior is attributed to the low binding energy of the trions. Within the tunneling blockade regime, emission becomes dominated by processes involving excitons bound to single shallow impurities, which behave as two-level centers activated by resonant tunneling. The quantum nature of the emission is confirmed by the anti-bunched photon emission statistics. The narrow distribution of emission energies ($sim 10$~meV) and the electrical connection to the QWs make these single-exciton centers interesting candidates for applications in single-photon sources.
With gate-defined electrostatic traps fabricated on a double quantum well we are able to realize an optically active and voltage-tunable quantum dot confining individual, long-living, spatially indirect excitons. We study the transition from multi ex citons down to a single indirect exciton. In the few exciton regime, we observe discrete emission lines reflecting the interplay of dipolar interexcitonic repulsion and spatial quantization. The quantum dot states are tunable by gate voltage and employing a magnetic field results in a diamagnetic shift. The scheme introduces a new gate-defined platform for creating and controlling optically active quantum dots and opens the route to lithographically defined coupled quantum dot arrays with tunable in-plane coupling and voltage-controlled optical properties of single charge and spin states.
70 - Nadav Landau 2020
We observe for the first time two-photon excited condensation of exciton-polaritons. The angle-resolved photoluminescence (PL) from the Lower Polariton (LP) ground state in our planar GaAs-based microcavity structure exhibits a clear intensity thresh old as a function of increased two-photon excitation power, coinciding with an interaction-induced blueshift and a narrowing of spectral linewidth, characteristic of the transition from a thermal distribution of lower polaritons to polariton condensation. Two-Photon Absorption (TPA) is evidenced in the quadratic dependence of the input-output curves below and above the threshold region. Second Harmonic Generation (SHG) is ruled out by both this threshold behavior and by scanning the pump photon energy and observing a lack of dependence of the LP emission peak energy. Our results pave the way towards realization of a polariton-based stimulated THz radiation source, stemming from the dipole-allowed transition from the Quantum Well (QW) 2p dark exciton state to the 1s-exciton-based LP ground state, as theoretically predicted in [A. V. Kavokin et al., Phys. Rev. Lett. 108, 197401 (2012)].
We derive a rigorous theory of the interaction between photons and spatially extended excitons confined in quantum dots in inhomogeneous photonic materials. We show that, beyond the dipole approximation, the radiative decay rate is proportional to a non-local interaction function, which describes the interaction between light and spatially extended excitons. In this regime, light and matter degrees of freedom cannot be separated and a complex interplay between the nanostructured optical environment and the exciton envelope function emerges. We illustrate this by specific examples and derive a series of important analytical relations, which are useful for applying the formalism to practical problems. In the dipole limit, the decay rate is proportional to the projected local density of optical states and we obtain the strong and weak confinement regimes as special cases.
We present a simple method to create an in-plane lateral potential in a semiconductor microcavity using a metal thin-film. Two types of potential are produced: a circular aperture and a one-dimensional (1D) periodic grating pattern. The amplitude of the potential induced by a 24 nm-6 nm Au/Ti film is on the order of a few hundreds of ueV measured at 6 ~ 8 K. Since the metal layer makes the electromagnetic fields to be close to zero at the metal-semiconductor interface, the photon mode is confined more inside of the cavity. As a consequence, the effective cavity length is reduced under the metal film, and the corresponding cavity resonance is blue-shifted. Our experimental results are in a good agreement with theoretical estimates. In addition, by applying a DC electric voltage to the metal film, we are able to modify the quantum well exciton mode due to the quantum confined Stark effect, inducing a ~ 1 meV potential at ~ 20 kV/cm. Our method produces a controllable in-plane spatial trap potential for lower exciton-polaritons (LPs), which can be a building block towards 1D arrays and 2D lattices of LP condensates.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا