ترغب بنشر مسار تعليمي؟ اضغط هنا

Single exciton emission from gate-defined quantum dots

389   0   0.0 ( 0 )
 نشر من قبل Georg Schinner
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

With gate-defined electrostatic traps fabricated on a double quantum well we are able to realize an optically active and voltage-tunable quantum dot confining individual, long-living, spatially indirect excitons. We study the transition from multi excitons down to a single indirect exciton. In the few exciton regime, we observe discrete emission lines reflecting the interplay of dipolar interexcitonic repulsion and spatial quantization. The quantum dot states are tunable by gate voltage and employing a magnetic field results in a diamagnetic shift. The scheme introduces a new gate-defined platform for creating and controlling optically active quantum dots and opens the route to lithographically defined coupled quantum dot arrays with tunable in-plane coupling and voltage-controlled optical properties of single charge and spin states.



قيم البحث

اقرأ أيضاً

We consider electrostatically coupled quantum dots in topological insulators, otherwise confined and gapped by a magnetic texture. By numerically solving the (2+1) Dirac equation for the wave packet dynamics, we extract the energy spectrum of the cou pled dots as a function of bias-controlled coupling and an external perpendicular magnetic field. We show that the tunneling energy can be controlled to a large extent by the electrostatic barrier potential. Particularly interesting is the coupling via Klein tunneling through a resonant valence state of the barrier. The effective three-level system nicely maps to a model Hamiltonian, from which we extract the Klein coupling between the confined conduction and valence dots levels. For large enough magnetic fields Klein tunneling can be completely blocked due to the enhanced localization of the degenerate Landau levels formed in the quantum dots.
We report on charge detection in electrostatically-defined quantum dot devices in bilayer graphene using an integrated charge detector. The device is fabricated without any etching and features a graphite back gate, leading to high quality quantum do ts. The charge detector is based on a second quantum dot separated from the first dot by depletion underneath a 150 nm wide gate. We show that Coulomb resonances in the sensing dot are sensitive to individual charging events on the nearby quantum dot. The potential change due to single electron charging causes a step-like change (up to 77 %) in the current through the charge detector. Furthermore, the charging states of a quantum dot with tunable tunneling barriers and of coupled quantum dots can be detected.
We theoretically analyse the possibility to electrostatically confine electrons in circular quantum dot arrays, impressed on contacted graphene nanoribbons by top gates. Utilising exact numerical techniques, we compute the scattering efficiency of a single dot and demonstrate that for small-sized scatterers the cross-sections are dominated by quantum effects, where resonant scattering leads to a series of quasi-bound dot states. Calculating the conductance and the local density of states for quantum dot superlattices we show that the resonant carrier transport through such graphene-based nanostructures can be easily tuned by varying the gate voltage.
We present low temperature transport measurements on double quantum dots in InAs nanowires grown by metal-organic vapor phase epitaxy. Two dots in series are created by lithographically defined top-gates with a procedure involving no extra insulating layer. We demonstrate the full tunability from strong to weak coupling between the dots. The quantum mechanical nature of the coupling leads to the formation of a molecular state extending over both dots. The excitation spectra of the individual dots are observable by their signatures in the nonlinear transport.
Quantum-mechanical correlations of interacting fermions result in the emergence of exotic phases. Magnetic phases naturally arise in the Mott-insulator regime of the Fermi-Hubbard model, where charges are localized and the spin degree of freedom rema ins. In this regime the occurrence of phenomena such as resonating valence bonds, frustrated magnetism, and spin liquids are predicted. Quantum systems with engineered Hamiltonians can be used as simulators of such spin physics to provide insights beyond the capabilities of analytical methods and classical computers. To be useful, methods for the preparation of intricate many-body spin states and access to relevant observables are required. Here we show the quantum simulation of magnetism in the Mott-insulator regime with a linear quantum dot array. We characterize a Heisenberg chain of four spins, dial in homogeneous exchange couplings, and probe the low-energy antiferromagnetic eigenstate with singlet-triplet correlation measurements. The methods and control presented here open new opportunities for the simulation of quantum magnetism benefiting from the flexibility in tuning and layout of gate-defined quantum dot arrays.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا