ترغب بنشر مسار تعليمي؟ اضغط هنا

No-arbitrage concepts in topological vector lattices

60   0   0.0 ( 0 )
 نشر من قبل Stefan Tappe
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We provide a general framework for no-arbitrage concepts in topological vector lattices, which covers many of the well-known no-arbitrage concepts as particular cases. The main structural condition we impose is that the outcomes of trading strategies with initial wealth zero and those with positive initial wealth have the structure of a convex cone. As one consequence of our approach, the concepts NUPBR, NAA$_1$ and NA$_1$ may fail to be equivalent in our general setting. Furthermore, we derive abstra



قيم البحث

اقرأ أيضاً

120 - Alberto Ohashi 2009
In this work we introduce Heath-Jarrow-Morton (HJM) interest rate models driven by fractional Brownian motions. By using support arguments we prove that the resulting model is arbitrage free under proportional transaction costs in the same spirit of Guasoni [Math. Finance 16 (2006) 569-582]. In particular, we obtain a drift condition which is similar in nature to the classical HJM no-arbitrage drift restriction. The second part of this paper deals with consistency problems related to the fractional HJM dynamics. We give a fairly complete characterization of finite-dimensional invariant manifolds for HJM models with fractional Brownian motion by means of Nagumo-type conditions. As an application, we investigate consistency of Nelson-Siegel family with respect to Ho-Lee and Hull-White models. It turns out that similar to the Brownian case such a family does not go well with the fractional HJM dynamics with deterministic volatility. In fact, there is no nontrivial fractional interest rate model consistent with the Nelson-Siegel family.
We provide a characterization in terms of Fatou closedness for weakly closed monotone convex sets in the space of $mathcal{P}$-quasisure bounded random variables, where $mathcal{P}$ is a (possibly non-dominated) class of probability measures. Applications of our results lie within robu
The no-arbitrage property is widely accepted to be a centerpiece of modern financial mathematics and could be considered to be a financial law applicable to a large class of (idealized) markets. The paper addresses the following basic question: can o ne characterize the class of transformations that leave the law of no-arbitrage invariant? We provide a geometric formalization of this question in a non probabilistic setting of discrete time, the so-called trajectorial models. The paper then characterizes, in a local sense, the no-arbitrage symmetries and illustrates their meaning in a detailed example. Our context makes the result available to the stochastic setting as a special case
Modelling joint dynamics of liquid vanilla options is crucial for arbitrage-free pricing of illiquid derivatives and managing risks of option trade books. This paper develops a nonparametric model for the European options book respecting underlying f inancial constraints and while being practically implementable. We derive a state space for prices which are free from static (or model-independent) arbitrage and study the inference problem where a model is learnt from discrete time series data of stock and option prices. We use neural networks as function approximators for the drift and diffusion of the modelled SDE system, and impose constraints on the neural nets such that no-arbitrage conditions are preserved. In particular, we give methods to calibrate textit{neural SDE} models which are guaranteed to satisfy a set of linear inequalities. We validate our approach with numerical experiments using data generated from a Heston stochastic local volatility model.
Most previous contributions to BSDEs, and the related theories of nonlinear expectation and dynamic risk measures, have been in the framework of continuous time diffusions or jump diffusions. Using solutions of BSDEs on spaces related to finite state , continuous time Markov chains, we develop a theory of nonlinear expectations in the spirit of [Dynamically consistent nonlinear evaluations and expectations (2005) Shandong Univ.]. We prove basic properties of these expectations and show their applications to dynamic risk measures on such spaces. In particular, we prove comparison theorems for scalar and vector valued solutions to BSDEs, and discuss arbitrage and risk measures in the scalar case.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا