ﻻ يوجد ملخص باللغة العربية
We show that gravitating Merons in $D$-dimensional massive Yang-Mills theory can be mapped to solutions of the Einstein-Skyrme model. The identification of the solutions relies on the fact that, when considering the Meron ansatz for the gauge connection $A=lambda U^{-1}dU$, the massive Yang-Mills equations reduce to the Skyrme equations for the corresponding group element $U$. In the same way, the energy-momentum tensors of both theories can be identified and therefore lead to the same Einstein equations. Subsequently, we focus on the $SU(2)$ case and show that introducing a mass for the Yang-Mills field restricts Merons to live on geometries given by the direct product of $S^3$ (or $S^2$) and Lorentzian manifolds with constant Ricci scalar. We construct explicit examples for $D=4$ and $D=5$. Finally, we comment on possible generalizations.
In this paper an intrinsically non-Abelian black hole solution for the SU(2) Einstein-Yang-Mills theory in four dimensions is constructed. The gauge field of this solution has the form of a meron whereas the metric is the one of a Reissner-Nordstrom
We reconsider the algebraic BRS renormalization of Wittens topological Yang-Mills field theory by making use of a vector supersymmetry Ward identity which improves the finiteness properties of the model. The vector supersymmetric structure is a commo
An effective field theory model of the massive Yang-Mills theory is considered. Assuming that the renormalized coupling constants of non-renormalizable interactions are suppressed by a large scale parameter it is shown that in analogy to the non-abel
We study the spectrum of anomalous dimensions of operators dual to giant graviton branes. The operators considered belong to the su$(2|3)$ sector of ${cal N}=4$ super Yang-Mills theory, have a bare dimension $sim N$ and are a linear combination of re
We discuss bosonic and supersymmetric Yang-Mills matrix models with compact semi-simple gauge group. We begin by finding convergence conditions for the partition and correlation functions. Moving on, we specialise to the SU(N) models with large N. In