ترغب بنشر مسار تعليمي؟ اضغط هنا

Meron-like topological solitons in massive Yang-Mills theory and the Skyrme model

67   0   0.0 ( 0 )
 نشر من قبل Patricio Salgado-Rebolledo
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We show that gravitating Merons in $D$-dimensional massive Yang-Mills theory can be mapped to solutions of the Einstein-Skyrme model. The identification of the solutions relies on the fact that, when considering the Meron ansatz for the gauge connection $A=lambda U^{-1}dU$, the massive Yang-Mills equations reduce to the Skyrme equations for the corresponding group element $U$. In the same way, the energy-momentum tensors of both theories can be identified and therefore lead to the same Einstein equations. Subsequently, we focus on the $SU(2)$ case and show that introducing a mass for the Yang-Mills field restricts Merons to live on geometries given by the direct product of $S^3$ (or $S^2$) and Lorentzian manifolds with constant Ricci scalar. We construct explicit examples for $D=4$ and $D=5$. Finally, we comment on possible generalizations.



قيم البحث

اقرأ أيضاً

In this paper an intrinsically non-Abelian black hole solution for the SU(2) Einstein-Yang-Mills theory in four dimensions is constructed. The gauge field of this solution has the form of a meron whereas the metric is the one of a Reissner-Nordstrom black hole in which, however, the coefficient of the $1/r^2$ term is not an integration constant. Even if the stress-energy tensor of the Yang-Mills field is spherically symmetric, the field strength of the Yang-Mills field itself is not. A remarkable consequence of this fact, which allows to distinguish the present solution from essentially Abelian configurations, is the Jackiw, Rebbi, Hasenfratz, t Hooft mechanism according to which excitations of bosonic fields moving in the background of a gauge field with this characteristic behave as Fermionic degrees of freedom.
We reconsider the algebraic BRS renormalization of Wittens topological Yang-Mills field theory by making use of a vector supersymmetry Ward identity which improves the finiteness properties of the model. The vector supersymmetric structure is a commo n feature of several topological theories. The most general local counterterm is determined and is shown to be a trivial BRS-coboundary.
132 - J. Gegelia 2007
An effective field theory model of the massive Yang-Mills theory is considered. Assuming that the renormalized coupling constants of non-renormalizable interactions are suppressed by a large scale parameter it is shown that in analogy to the non-abel ian gauge invariant theory the dimensionless coupling constant vanishes logarithmically for large values of the renormalization scale parameter.
We study the spectrum of anomalous dimensions of operators dual to giant graviton branes. The operators considered belong to the su$(2|3)$ sector of ${cal N}=4$ super Yang-Mills theory, have a bare dimension $sim N$ and are a linear combination of re stricted Schur polynomials with $psim O(1)$ long rows or columns. In the same way that the operator mixing problem in the planar limit can be mapped to an integrable spin chain, we find that our problem maps to particles hopping on a lattice. The detailed form of the model is in precise agreement with the expected world volume dynamics of $p$ giant graviton branes, which is a U$(p)$ Yang-Mills theory. The lattice model we find has a number of noteworthy features. It is a lattice model with all-to-all sites interactions and quenched disorder.
68 - Peter Austing 2001
We discuss bosonic and supersymmetric Yang-Mills matrix models with compact semi-simple gauge group. We begin by finding convergence conditions for the partition and correlation functions. Moving on, we specialise to the SU(N) models with large N. In both the Yang-Mills and cohomological formulations, we find all quantities which are invariant under the supercharges. Finally, we apply the deformation method of Moore, Nekrasov and Shatashvili directly to the Yang-Mills model. We find a deformation of the action which generates mass terms for all the matrix fields whilst preserving some supersymmetry. This allows us to rigorously integrate over a BRST quartet and arrive at the well known formula of MNS.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا