ﻻ يوجد ملخص باللغة العربية
Neural networks have seen limited use in prediction for high-dimensional data with small sample sizes, because they tend to overfit and require tuning many more hyperparameters than existing off-the-shelf machine learning methods. With small modifications to the network architecture and training procedure, we show that dense neural networks can be a practical data analysis tool in these settings. The proposed method, Ensemble by Averaging Sparse-Input Hierarchical networks (EASIER-net), appropriately prunes the network structure by tuning only two L1-penalty parameters, one that controls the input sparsity and another that controls the number of hidden layers and nodes. The method selects variables from the true support if the irrelevant covariates are only weakly correlated with the response; otherwise, it exhibits a grouping effect, where strongly correlated covariates are selected at similar rates. On a collection of real-world datasets with different sizes, EASIER-net selected network architectures in a data-adaptive manner and achieved higher prediction accuracy than off-the-shelf methods on average.
Stochastic linear bandits with high-dimensional sparse features are a practical model for a variety of domains, including personalized medicine and online advertising. We derive a novel $Omega(n^{2/3})$ dimension-free minimax regret lower bound for s
We study parameter estimation in Nonlinear Factor Analysis (NFA) where the generative model is parameterized by a deep neural network. Recent work has focused on learning such models using inference (or recognition) networks; we identify a crucial pr
Neural networks are usually not the tool of choice for nonparametric high-dimensional problems where the number of input features is much larger than the number of observations. Though neural networks can approximate complex multivariate functions, t
A representative model in integrative analysis of two high-dimensional correlated datasets is to decompose each data matrix into a low-rank common matrix generated by latent factors shared across datasets, a low-rank distinctive matrix corresponding
Modern biomedical studies often collect multiple types of high-dimensional data on a common set of objects. A popular model for the joint analysis of multi-type datasets decomposes each data matrix into a low-rank common-variation matrix generated by