ترغب بنشر مسار تعليمي؟ اضغط هنا

Ensembled sparse-input hierarchical networks for high-dimensional datasets

68   0   0.0 ( 0 )
 نشر من قبل Jean Feng
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

Neural networks have seen limited use in prediction for high-dimensional data with small sample sizes, because they tend to overfit and require tuning many more hyperparameters than existing off-the-shelf machine learning methods. With small modifications to the network architecture and training procedure, we show that dense neural networks can be a practical data analysis tool in these settings. The proposed method, Ensemble by Averaging Sparse-Input Hierarchical networks (EASIER-net), appropriately prunes the network structure by tuning only two L1-penalty parameters, one that controls the input sparsity and another that controls the number of hidden layers and nodes. The method selects variables from the true support if the irrelevant covariates are only weakly correlated with the response; otherwise, it exhibits a grouping effect, where strongly correlated covariates are selected at similar rates. On a collection of real-world datasets with different sizes, EASIER-net selected network architectures in a data-adaptive manner and achieved higher prediction accuracy than off-the-shelf methods on average.



قيم البحث

اقرأ أيضاً

Stochastic linear bandits with high-dimensional sparse features are a practical model for a variety of domains, including personalized medicine and online advertising. We derive a novel $Omega(n^{2/3})$ dimension-free minimax regret lower bound for s parse linear bandits in the data-poor regime where the horizon is smaller than the ambient dimension and where the feature vectors admit a well-conditioned exploration distribution. This is complemented by a nearly matching upper bound for an explore-then-commit algorithm showing that that $Theta(n^{2/3})$ is the optimal rate in the data-poor regime. The results complement existing bounds for the data-rich regime and provide another example where carefully balancing the trade-off between information and regret is necessary. Finally, we prove a dimension-free $O(sqrt{n})$ regret upper bound under an additional assumption on the magnitude of the signal for relevant features.
We study parameter estimation in Nonlinear Factor Analysis (NFA) where the generative model is parameterized by a deep neural network. Recent work has focused on learning such models using inference (or recognition) networks; we identify a crucial pr oblem when modeling large, sparse, high-dimensional datasets -- underfitting. We study the extent of underfitting, highlighting that its severity increases with the sparsity of the data. We propose methods to tackle it via iterative optimization inspired by stochastic variational inference citep{hoffman2013stochastic} and improvements in the sparse data representation used for inference. The proposed techniques drastically improve the ability of these powerful models to fit sparse data, achieving state-of-the-art results on a benchmark text-count dataset and excellent results on the task of top-N recommendation.
259 - Jean Feng , Noah Simon 2017
Neural networks are usually not the tool of choice for nonparametric high-dimensional problems where the number of input features is much larger than the number of observations. Though neural networks can approximate complex multivariate functions, t hey generally require a large number of training observations to obtain reasonable fits, unless one can learn the appropriate network structure. In this manuscript, we show that neural networks can be applied successfully to high-dimensional settings if the true function falls in a low dimensional subspace, and proper regularization is used. We propose fitting a neural network with a sparse group lasso penalty on the first-layer input weights. This results in a neural net that only uses a small subset of the original features. In addition, we characterize the statistical convergence of the penalized empirical risk minimizer to the optimal neural network: we show that the excess risk of this penalized estimator only grows with the logarithm of the number of input features; and we show that the weights of irrelevant features converge to zero. Via simulation studies and data analyses, we show that these sparse-input neural networks outperform existing nonparametric high-dimensional estimation methods when the data has complex higher-order interactions.
242 - Hai Shu , Zhe Qu 2019
A representative model in integrative analysis of two high-dimensional correlated datasets is to decompose each data matrix into a low-rank common matrix generated by latent factors shared across datasets, a low-rank distinctive matrix corresponding to each dataset, and an additive noise matrix. Existing decomposition methods claim that their common matrices capture the common pattern of the two datasets. However, their so-called common pattern only denotes the common latent factors but ignores the common pattern between the two coefficient matrices of these common latent factors. We propose a new unsupervised learning method, called the common and distinctive pattern analysis (CDPA), which appropriately defines the two types of data patterns by further incorporating the common and distinctive patterns of the coefficient matrices. A consistent estimation approach is developed for high-dimensional settings, and shows reasonably good finite-sample performance in simulations. Our simulation studies and real data analysis corroborate that the proposed CDPA can provide better characterization of common and distinctive patterns and thereby benefit data mining.
151 - Hai Shu , Zhe Qu , Hongtu Zhu 2020
Modern biomedical studies often collect multiple types of high-dimensional data on a common set of objects. A popular model for the joint analysis of multi-type datasets decomposes each data matrix into a low-rank common-variation matrix generated by latent factors shared across all datasets, a low-rank distinctive-variation matrix corresponding to each dataset, and an additive noise matrix. We propose decomposition-based generalized canonical correlation analysis (D-GCCA), a novel decomposition method that appropriately defines those matrices on the L2 space of random variables, whereas most existing methods are developed on its approximation, the Euclidean dot product space. Moreover to well calibrate common latent factors, we impose a desirable orthogonality constraint on distinctive latent factors. Existing methods inadequately consider such orthogonality and can thus suffer from substantial loss of undetected common variation. Our D-GCCA takes one step further than GCCA by separating common and distinctive variations among canonical variables, and enjoys an appealing interpretation from the perspective of principal component analysis. Consistent estimators of our common-variation and distinctive-variation matrices are established with good finite-sample numerical performance, and have closed-form expressions leading to efficient computation especially for large-scale datasets. The superiority of D-GCCA over state-of-the-art methods is also corroborated in simulations and real-world data examples.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا