ترغب بنشر مسار تعليمي؟ اضغط هنا

From Standard Summarization to New Tasks and Beyond: Summarization with Manifold Information

110   0   0.0 ( 0 )
 نشر من قبل Shen Gao
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Text summarization is the research area aiming at creating a short and condensed version of the original document, which conveys the main idea of the document in a few words. This research topic has started to attract the attention of a large community of researchers, and it is nowadays counted as one of the most promising research areas. In general, text summarization algorithms aim at using a plain text document as input and then output a summary. However, in real-world applications, most of the data is not in a plain text format. Instead, there is much manifold information to be summarized, such as the summary for a web page based on a query in the search engine, extreme long document (e.g., academic paper), dialog history and so on. In this paper, we focus on the survey of these new summarization tasks and approaches in the real-world application.



قيم البحث

اقرأ أيضاً

In a large-scale knowledge graph (KG), an entity is often described by a large number of triple-structured facts. Many applications require abridge
Information retrieval (IR) for precision medicine (PM) often involves looking for multiple pieces of evidence that characterize a patient case. This typically includes at least the name of a condition and a genetic variation that applies to the patie nt. Other factors such as demographic attributes, comorbidities, and social determinants may also be pertinent. As such, the retrieval problem is often formulated as ad hoc search but with multiple facets (e.g., disease, mutation) that may need to be incorporated. In this paper, we present a document reranking approach that combines neural query-document matching and text summarization toward such retrieval scenarios. Our architecture builds on the basic BERT model with three specific components for reranking: (a). document-query matching (b). keyword extraction and (c). facet-conditioned abstractive summarization. The outcomes of (b) and (c) are used to essentially transform a candidate document into a concise summary that can be compared with the query at hand to compute a relevance score. Component (a) directly generates a matching score of a candidate document for a query. The full architecture benefits from the complementary potential of document-query matching and the novel document transformation approach based on summarization along PM facets. Evaluations using NISTs TREC-PM track datasets (2017--2019) show that our model achieves state-of-the-art performance. To foster reproducibility, our code is made available here: https://github.com/bionlproc/text-summ-for-doc-retrieval.
In this work, we model abstractive text summarization using Attentional Encoder-Decoder Recurrent Neural Networks, and show that they achieve state-of-the-art performance on two different corpora. We propose several novel models that address critical problems in summarization that are not adequately modeled by the basic architecture, such as modeling key-words, capturing the hierarchy of sentence-to-word structure, and emitting words that are rare or unseen at training time. Our work shows that many of our proposed models contribute to further improvement in performance. We also propose a new dataset consisting of multi-sentence summaries, and establish performance benchmarks for further research.
112 - Kai Wang , Xiaojun Quan , Rui Wang 2019
The success of neural summarization models stems from the meticulous encodings of source articles. To overcome the impediments of limited and sometimes noisy training data, one promising direction is to make better use of the available training data by applying filters during summarization. In this paper, we propose a novel Bi-directional Selective Encoding with Template (BiSET) model, which leverages template discovered from training data to softly select key information from each source article to guide its summarization process. Extensive experiments on a standard summarization dataset were conducted and the results show that the template-equipped BiSET model manages to improve the summarization performance significantly with a new state of the art.
We suggest a new idea of Editorial Network - a mixed extractive-abstractive summarization approach, which is applied as a post-processing step over a given sequence of extracted sentences. Our network tries to imitate the decision process of a human editor during summarization. Within such a process, each extracted sentence may be either kept untouched, rephrased or completely rejected. We further suggest an effective way for training the editor based on a novel soft-labeling approach. Using the CNN/DailyMail dataset we demonstrate the effectiveness of our approach compared to state-of-the-art extractive-only or abstractive-only baseline methods.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا