ﻻ يوجد ملخص باللغة العربية
The ultrafast optical response of two nodal-line semimetals, ZrSiS and ZrSiSe, was studied in the near-infrared using transient reflectivity. The two materials exhibit similar responses, characterized by two features, well resolved in time and energy. The first transient feature decays after a few hundred femtoseconds, while the second lasts for nanoseconds. Using Drude-Lorentz fits of the materials equilibrium reflectance, we show that the fast response is well-represented by a decrease of the Drude plasma frequency, and the second feature by an increase of the Drude scattering rate. This directly connects the transient data to a physical picture in which carriers, after being excited away from the Fermi energy, return to that vicinity within a few hundred femtoseconds by sharing their excess energy with the phonon bath, resulting in a hot lattice that relaxes only through slow diffusion processes (ns). The emerging picture reveals that the sudden change of the density of carriers at the Fermi level instantaneously modifies the transport properties of the materials on a timescale not compatible with electron phonon thermalization and is largely driven by the reduced density of states at the nodal line.
Owing to the natural compatibility with current semiconductor industry, silicon allotropes with diverse structural and electronic properties provide promising platforms for the next-generation Si-based devices. After screening 230 all-silicon crystal
In this work, we present a model of the surface states of nonsymmorphic semimetals. These are derived from surface mass terms that lift the high degeneracy imposed in the band structure by the nonsymmorphic bulk symmetries. Reflecting the reduced sym
We instigate the angle-dependent magnetoresistance (AMR) of the layered nodal-line Dirac semimetal ZrSiS for the in-plane and out-of-plane current directions. This material has recently revealed an intriguing butterfly-shaped in-plane AMR that is not
ZrSiS has recently gained attention due to its unusual electronic properties: nearly perfect electron-hole compensation, large, anisotropic magneto-resistance, multiple Dirac nodes near the Fermi level, and an extremely large range of linear dispersi
Topological materials provide an exclusive platform to study the dynamics of relativistic particles in table-top experiments and offer the possibility of wide-scale technological applications. ZrSiS is a newly discovered topological nodal-line semime