ترغب بنشر مسار تعليمي؟ اضغط هنا

Transient Drude Response Dominates Near-Infrared Pump-Probe Reflectivity in Nodal-Line Semimetals ZrSiS and ZrSiSe

148   0   0.0 ( 0 )
 نشر من قبل Robert Kirby
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The ultrafast optical response of two nodal-line semimetals, ZrSiS and ZrSiSe, was studied in the near-infrared using transient reflectivity. The two materials exhibit similar responses, characterized by two features, well resolved in time and energy. The first transient feature decays after a few hundred femtoseconds, while the second lasts for nanoseconds. Using Drude-Lorentz fits of the materials equilibrium reflectance, we show that the fast response is well-represented by a decrease of the Drude plasma frequency, and the second feature by an increase of the Drude scattering rate. This directly connects the transient data to a physical picture in which carriers, after being excited away from the Fermi energy, return to that vicinity within a few hundred femtoseconds by sharing their excess energy with the phonon bath, resulting in a hot lattice that relaxes only through slow diffusion processes (ns). The emerging picture reveals that the sudden change of the density of carriers at the Fermi level instantaneously modifies the transport properties of the materials on a timescale not compatible with electron phonon thermalization and is largely driven by the reduced density of states at the nodal line.

قيم البحث

اقرأ أيضاً

90 - Zhifeng Liu , Hongli Xin , Li Fu 2018
Owing to the natural compatibility with current semiconductor industry, silicon allotropes with diverse structural and electronic properties provide promising platforms for the next-generation Si-based devices. After screening 230 all-silicon crystal s in the zeolite frameworks by first-principles calculations, we disclose two structurally stable Si allotropes (AHT-Si24 and VFI-Si36) containing open channels as topological node-line semimetals with Dirac nodal points forming a nodal loop in the kz=0 plane of Brillouin zone. Interestingly, their nodal loops protected by inversion and time-reversal symmetries are robust against SU(2) symmetry breaking due to very weak spin-orbit coupling of Si. When the nodal lines are projected onto the (001) surface, flat surface bands can be observed because of the nontrivial topology of the bulk band structures. Our discoveries extend the topological physics to the three-dimensional Si materials, highlighting the possibility to realize low-cost, nontoxic and semiconductor-compatible Si-based electronics with topological quantum states.
In this work, we present a model of the surface states of nonsymmorphic semimetals. These are derived from surface mass terms that lift the high degeneracy imposed in the band structure by the nonsymmorphic bulk symmetries. Reflecting the reduced sym metry at the surface, the bulk bands are strongly modified. This leads to the creation of two-dimensional floating bands, which are distinct from Shockley states, quantum well states or topologically protected surface states. We focus on the layered semimetal ZrSiS to clarify the origin of its surface states. We demonstrate an excellent agreement between DFT calculations and ARPES measurements and present an effective four-band model in which similar surface bands appear. Finally, we emphasize the role of the surface chemical potential by comparing the surface density of states in samples with and without potassium coating. Our findings can be extended to related compounds and generalized to other crystals with nonsymmorphic symmetries.
We instigate the angle-dependent magnetoresistance (AMR) of the layered nodal-line Dirac semimetal ZrSiS for the in-plane and out-of-plane current directions. This material has recently revealed an intriguing butterfly-shaped in-plane AMR that is not well understood. Our measurements of the polar out-of-plane AMR show a surprisingly different response with a pronounced cusp-like feature. The maximum of the cusp-like anisotropy is reached when the magnetic field is oriented in the $a$-$b$ plane. Moreover, the AMR for the azimuthal out-of-plane current direction exhibits a very strong four-fold $a$-$b$ plane anisotropy. Combining the Fermi surfaces calculated from first principles with the Boltzmanns semiclassical transport theory we reproduce and explain all the prominent features of the unusual behavior of the in-plane and out-of-plane AMR. We are also able to clarify the origin of the strong non-saturating transverse magnetoresistance as an effect of imperfect charge-carrier compensation and open orbits. Finally, by combining our theoretical model and experimental data we estimate the average relaxation time of $2.6times10^{-14}$~s and the mean free path of $15$~nm at 1.8~K in our samples of ZrSiS.
ZrSiS has recently gained attention due to its unusual electronic properties: nearly perfect electron-hole compensation, large, anisotropic magneto-resistance, multiple Dirac nodes near the Fermi level, and an extremely large range of linear dispersi on of up to 2 eV. We have carried out a series of high pressure electrical resistivity measurements on single crystals of ZrSiS. Shubnikov-de Haas measurements show two distinct oscillation frequencies. For the smaller orbit, we observe a change in the phase of 0.5, which occurs between 0.16 - 0.5 GPa. This change in phase is accompanied by an abrupt decrease of the cross-sectional area of this Fermi surface. We attribute this change in phase to a possible topological quantum phase transition. The phase of the larger orbit exhibits a Berry phase of pi and remains roughly constant up to 2.3 GPa. Resistivity measurements to higher pressures show no evidence for pressure-induced superconductivity to at least 20 GPa.
Topological materials provide an exclusive platform to study the dynamics of relativistic particles in table-top experiments and offer the possibility of wide-scale technological applications. ZrSiS is a newly discovered topological nodal-line semime tal and has drawn enormous interests. In this report, we have investigated the lattice dynamics and electron-phonon interaction in single crystalline ZrSiS using Raman spectroscopy. Polarization and angle resolved measurements have been performed and the results have been analyzed using crystal symmetries and theoretically calculated atomic vibrational patterns along with phonon dispersion spectra. Wavelength and temperature dependent measurements show the complex interplay of electron and phonon degrees of freedom, resulting in resonant phonon and quasielastic electron scatterings through inter-band transitions. Our high-pressure Raman studies reveal vibrational anomalies, which were further investigated from the high-pressure synchrotron x-ray diffraction (HPXRD) spectra. From HPXRD, we have clearly identified pressure-induced structural transitions and coexistence of multiple phases, which also indicate possible electronic topological transitions in ZrSiS. The present study not only provides the fundamental information on the phonon subsystem, but also sheds some light in understanding the topological nodal-line phase in ZrSiS and other iso-structural systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا