ترغب بنشر مسار تعليمي؟ اضغط هنا

Spectral Ranking with Covariates

105   0   0.0 ( 0 )
 نشر من قبل Siu Lun Chau
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider approaches to the classical problem of establishing a statistical ranking on a given set of items from incomplete and noisy pairwise comparisons, and propose spectral algorithms able to leverage available covariate information about the items. We give a comprehensive study of several ways such side information can be useful in spectral ranking. We establish connections of the resulting algorithms to reproducing kernel Hilbert spaces and associated dependence measures, along with an extension to fair ranking using statistical parity. We present an extensive set of numerical experiments showcasing the competitiveness of the proposed algorithms with state-of-the-art methods.

قيم البحث

اقرأ أيضاً

228 - Sheng Qiang , Mohsen Bayati 2016
We consider a firm that sells products over $T$ periods without knowing the demand function. The firm sequentially sets prices to earn revenue and to learn the underlying demand function simultaneously. A natural heuristic for this problem, commonly used in practice, is greedy iterative least squares (GILS). At each time period, GILS estimates the demand as a linear function of the price by applying least squares to the set of prior prices and realized demands. Then a price that maximizes the revenue, given the estimated demand function, is used for the next time period. The performance is measured by the regret, which is the expected revenue loss from the optimal (oracle) pricing policy when the demand function is known. Recently, den Boer and Zwart (2014) and Keskin and Zeevi (2014) demonstrated that GILS is sub-optimal. They introduced algorithms which integrate forced price dispersion with GILS and achieve asymptotically optimal performance. In this paper, we consider this dynamic pricing problem in a data-rich environment. In particular, we assume that the firm knows the expected demand under a particular price from historical data, and in each period, before setting the price, the firm has access to extra information (demand covariates) which may be predictive of the demand. We prove that in this setting GILS achieves asymptotically optimal regret of order $log(T)$. We also show the following surprising result: in the original dynamic pricing problem of den Boer and Zwart (2014) and Keskin and Zeevi (2014), inclusion of any set of covariates in GILS as potential demand covariates (even though they could carry no information) would make GILS asymptotically optimal. We validate our results via extensive numerical simulations on synthetic and real data sets.
Data analyses based on linear methods constitute the simplest, most robust, and transparent approaches to the automatic processing of large amounts of data for building supervised or unsupervised machine learning models. Principal covariates regressi on (PCovR) is an underappreciated method that interpolates between principal component analysis and linear regression, and can be used to conveniently reveal structure-property relations in terms of simple-to-interpret, low-dimensional maps. Here we provide a pedagogic overview of these data analysis schemes, including the use of the kernel trick to introduce an element of non-linearity, while maintaining most of the convenience and the simplicity of linear approaches. We then introduce a kernelized version of PCovR and a sparsified extension, and demonstrate the performance of this approach in revealing and predicting structure-property relations in chemistry and materials science, showing a variety of examples including elemental carbon, porous silicate frameworks, organic molecules, amino acid conformers, and molecular materials.
Time series forecasting is an important problem across many domains, playing a crucial role in multiple real-world applications. In this paper, we propose a forecasting architecture that combines deep autoregressive models with a Spectral Attention ( SA) module, which merges global and local frequency domain information in the models embedded space. By characterizing in the spectral domain the embedding of the time series as occurrences of a random process, our method can identify global trends and seasonality patterns. Two spectral attention models, global and local to the time series, integrate this information within the forecast and perform spectral filtering to remove time seriess noise. The proposed architecture has a number of useful properties: it can be effectively incorporated into well-know forecast architectures, requiring a low number of parameters and producing interpretable results that improve forecasting accuracy. We test the Spectral Attention Autoregressive Model (SAAM) on several well-know forecast datasets, consistently demonstrating that our model compares favorably to state-of-the-art approaches.
This paper is concerned with the problem of top-$K$ ranking from pairwise comparisons. Given a collection of $n$ items and a few pairwise comparisons across them, one wishes to identify the set of $K$ items that receive the highest ranks. To tackle t his problem, we adopt the logistic parametric model --- the Bradley-Terry-Luce model, where each item is assigned a latent preference score, and where the outcome of each pairwise comparison depends solely on the relative scores of the two items involved. Recent works have made significant progress towards characterizing the performance (e.g. the mean square error for estimating the scores) of several classical methods, including the spectral method and the maximum likelihood estimator (MLE). However, where they stand regarding top-$K$ ranking remains unsettled. We demonstrate that under a natural random sampling model, the spectral method alone, or the regularized MLE alone, is minimax optimal in terms of the sample complexity --- the number of paired comparisons needed to ensure exact top-$K$ identification, for the fixed dynamic range regime. This is accomplished via optimal control of the entrywise error of the score estimates. We complement our theoretical studies by numerical experiments, confirming that both methods yield low entrywise errors for estimating the underlying scores. Our theory is established via a novel leave-one-out trick, which proves effective for analyzing both iterative and non-iterative procedures. Along the way, we derive an elementary eigenvector perturbation bound for probability transition matrices, which parallels the Davis-Kahan $sinTheta$ theorem for symmetric matrices. This also allows us to close the gap between the $ell_2$ error upper bound for the spectral method and the minimax lower limit.
The Hilbert Schmidt Independence Criterion (HSIC) is a kernel dependence measure that has applications in various aspects of machine learning. Conveniently, the objectives of different dimensionality reduction applications using HSIC often reduce to the same optimization problem. However, the nonconvexity of the objective function arising from non-linear kernels poses a serious challenge to optimization efficiency and limits the potential of HSIC-based formulations. As a result, only linear kernels have been computationally tractable in practice. This paper proposes a spectral-based optimization algorithm that extends beyond the linear kernel. The algorithm identifies a family of suitable kernels and provides the first and second-order local guarantees when a fixed point is reached. Furthermore, we propose a principled initialization strategy, thereby removing the need to repeat the algorithm at random initialization points. Compared to state-of-the-art optimization algorithms, our empirical results on real data show a run-time improvement by as much as a factor of $10^5$ while consistently achieving lower cost and classification/clustering errors. The implementation source code is publicly available on https://github.com/endsley.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا