ترغب بنشر مسار تعليمي؟ اضغط هنا

Individual Estimates of the Virial Factor in 10 Quasars: Implications on the Kinematics of the Broad Line Region

57   0   0.0 ( 0 )
 نشر من قبل Evencio Mediavilla
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Assuming a gravitational origin for the Fe III$lambdalambda$2039-2113 redshift and using microlensing based estimates of the size of the region emitting this feature, we obtain individual measurements of the virial factor, $f$, in 10 quasars. The average values for the Balmer lines, $langle f_{Hbeta}rangle={bf 0.43pm 0.20}$ and $langle f_{Halpha}rangle={bf 0.50pm 0.24}$, are in good agreement with the results of previous studies for objects with lines of comparable widths. In the case of Mg II, consistent results, $f_{Mg II} sim {bf 0.44}$, can be also obtained accepting a reasonable scaling for the size of the emitting region. The modeling of the cumulative histograms of individual measurements, $CDF(f)$, indicates a {relatively} high value for the ratio between isotropic and cylindrical motions, $asim {bf 0.4}-0.7$. On the contrary, we find very large values of the virial factor associated to the Fe III$lambdalambda$2039-2113 blend, $f_{FeIII}=14.3pm2.4$, which can be explained if this feature arises from a flattened nearly face-on structure, similar to the accretion disk.

قيم البحث

اقرأ أيضاً

We present new Gemini/GMOS optical spectroscopy of 16 extreme variability quasars (EVQs) that dimmed by more than 1.5 mag in the $g$ band between the Sloan Digital Sky Survey (SDSS) and the Dark Energy Survey (DES) epochs (separated by a few years in the quasar rest frame). The quasar sample covers a redshift range of $0.5 < z < 2.1$. Nearly half of these EVQs brightened significantly (by more than 0.5 mag in the $g$ band) in a few years after reaching their previous faintest state, and some EVQs showed rapid (non-blazar) variations of greater than 1-2 mag on timescales of only months. Leveraging on the large dynamic range in continuum variability between the earlier SDSS and the new GMOS spectra, we explore the associated variations in the broad Mg II,$lambda2798$ line, whose variability properties have not been well studied before. The broad Mg II flux varies in the same direction as the continuum flux, albeit with a smaller amplitude, which indicates at least some portion of Mg II is reverberating to continuum changes. However, the width (FWHM) of Mg II does not vary accordingly as continuum changes for most objects in the sample, in contrast to the case of the broad Balmer lines. Using the width of broad Mg II to estimate the black hole mass therefore introduces a luminosity-dependent bias.
We aim to study the structure and kinematics of the broad line region (BLR) of a sample of 27 gravitationally lensed quasars with up to five different epochs of observation. This sample is composed of ~100 spectra from the literature plus 22 unpublis hed spectra of 11 systems. We measure the magnitude differences in the broad emission line (BEL) wings and statistically model the distribution of microlensing magnifications to determine a maximum likelihood estimate for the sizes of the C IV, C III], and Mg II emitting regions. The BELs in lensed quasars are expected to be magnified differently owing to the different sizes of the regions from which they originate. Focusing on the most common BELs in our spectra (C IV, C III], and Mg II), we find that the low-ionization line Mg II is only weakly affected by microlensing. In contrast, the high-ionization line C IV shows strong microlensing in some cases, indicating that its emission region is more compact. Thus, the BEL profiles are deformed differently depending on the geometry and kinematics of the corresponding emitting region. We detect microlensing in either the blue or the red wing (or in both wings with different amplitudes) of C IV in more than 50% of the systems and find outstanding asymmetries in the wings of QSO 0957+561, SDSS J1004+4112, SDSS J1206+4332, and SDSS J1339+1310. This observation indicates that the BLR is, in general, not spherically symmetric and supports the existence of two regions in the BLR, one insensitive to microlensing and another that only shows up when it is magnified by microlensing.
We demonstrate a new technique for determining the physical conditions of the broad line emitting gas in quasars, using near-infrared hydrogen emission lines. Unlike higher ionisation species, hydrogen is an efficient line emitter for a very wide ran ge of photoionisation conditions, and the observed line ratios depend strongly on the density and photoionisation state of the gas present. A locally optimally emitting cloud model of the broad emission line region was compared to measured emission lines of four nearby ($zapprox0.2$) quasars that have optical and NIR spectra of sufficient signal-to-noise to measure their Paschen lines. The model provides a good fit to three of the objects, and a fair fit to the fourth object, a ULIRG. We find that low incident ionising fluxes ($phih<10^{18}$cmsqs), and high gas densities ($ h>10^{12}$cmcu) are required to reproduce the observed hydrogen emission line ratios. This analysis demonstrates that the use of composite spectra in photoionisation modelling is inappropriate; models must be fitted to the individual spectra of quasars.
Black Hole Mass (M_BH) estimation in quasars, especially at high redshift, involves use of single epoch spectra with s/n and resolution that permit accurate measurement of the width of a broad line assumed to be a reliable virial estimator. Coupled w ith an estimate of the radius of the broad line region this yields M_BH. The radius of the broad line region (BLR) may be inferred from an extrapolation of the correlation between source luminosity and reverberation derived r_BLR measures (the so-called Kaspi relation involving about 60 low z sources). We are exploring a different method for estimating r_BLR directly from inferred physical conditions in the BLR of each source. We report here on a comparison of r_BLR estimates that come from our method and from reverberation mapping. Our photoionization method employs diagnostic line intensity ratios in the rest-frame range 1400-2000 A (AlIII1860/SiIII]1892, CIV1549/AlIII1860) that enable derivation of the product of density and ionization parameter with the BLR distance derived from the definition of the ionization parameter. We find good agreement between our estimates of the density, ionization parameter and r_BLR and those from reverberation mapping. We suggest empirical corrections to improve the agreement between individual photoionization-derived r_BLR values and those obtained from reverberation mapping. The results in this paper can be exploited to estimate M_BH for large samples of high-z quasars using an appropriate virial broadening estimator. We show that the width of the UV intermediate emission lines are consistent with the width of H beta, therefore providing a reliable virial broadening estimator that can be measured in large samples of high-z quasars.
71 - D. Sluse 2012
When an image of a strongly lensed quasar is microlensed, the different components of its spectrum are expected to be differentially magnified owing to the different sizes of the corresponding emitting region. Chromatic changes are expected to be obs erved in the continuum while the emission lines should be deformed as a function of the size, geometry and kinematics of the regions from which they originate. Microlensing of the emission lines has been reported only in a handful of systems so far. In this paper we search for microlensing deformations of the optical spectra of pairs of images in 17 lensed quasars. This sample is composed of 13 pairs of previously unpublished spectra and four pairs of spectra from literature. Our analysis is based on a spectral decomposition technique which allows us to isolate the microlensed fraction of the flux independently of a detailed modeling of the quasar emission lines. Using this technique, we detect microlensing of the continuum in 85% of the systems. Among them, 80% show microlensing of the broad emission lines. Focusing on the most common lines in our spectra (CIII] and MgII) we detect microlensing of either the blue or the red wing, or of both wings with the same amplitude. This observation implies that the broad line region is not in general spherically symmetric. In addition, the frequent detection of microlensing of the blue and red wings independently but not simultaneously with a different amplitude, does not support existing microlensing simulations of a biconical outflow. Our analysis also provides the intrinsic flux ratio between the lensed images and the magnitude of the microlensing affecting the continuum. These two quantities are particularly relevant for the determination of the fraction of matter in clumpy form in galaxies and for the detection of dark matter substructures via the identification of flux ratio anomalies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا