ترغب بنشر مسار تعليمي؟ اضغط هنا

Microlensing of the broad emission lines in 27 gravitationally lensed quasars. Broad line region structure and kinematics

84   0   0.0 ( 0 )
 نشر من قبل Carina Fian
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We aim to study the structure and kinematics of the broad line region (BLR) of a sample of 27 gravitationally lensed quasars with up to five different epochs of observation. This sample is composed of ~100 spectra from the literature plus 22 unpublished spectra of 11 systems. We measure the magnitude differences in the broad emission line (BEL) wings and statistically model the distribution of microlensing magnifications to determine a maximum likelihood estimate for the sizes of the C IV, C III], and Mg II emitting regions. The BELs in lensed quasars are expected to be magnified differently owing to the different sizes of the regions from which they originate. Focusing on the most common BELs in our spectra (C IV, C III], and Mg II), we find that the low-ionization line Mg II is only weakly affected by microlensing. In contrast, the high-ionization line C IV shows strong microlensing in some cases, indicating that its emission region is more compact. Thus, the BEL profiles are deformed differently depending on the geometry and kinematics of the corresponding emitting region. We detect microlensing in either the blue or the red wing (or in both wings with different amplitudes) of C IV in more than 50% of the systems and find outstanding asymmetries in the wings of QSO 0957+561, SDSS J1004+4112, SDSS J1206+4332, and SDSS J1339+1310. This observation indicates that the BLR is, in general, not spherically symmetric and supports the existence of two regions in the BLR, one insensitive to microlensing and another that only shows up when it is magnified by microlensing.

قيم البحث

اقرأ أيضاً

71 - D. Sluse 2012
When an image of a strongly lensed quasar is microlensed, the different components of its spectrum are expected to be differentially magnified owing to the different sizes of the corresponding emitting region. Chromatic changes are expected to be obs erved in the continuum while the emission lines should be deformed as a function of the size, geometry and kinematics of the regions from which they originate. Microlensing of the emission lines has been reported only in a handful of systems so far. In this paper we search for microlensing deformations of the optical spectra of pairs of images in 17 lensed quasars. This sample is composed of 13 pairs of previously unpublished spectra and four pairs of spectra from literature. Our analysis is based on a spectral decomposition technique which allows us to isolate the microlensed fraction of the flux independently of a detailed modeling of the quasar emission lines. Using this technique, we detect microlensing of the continuum in 85% of the systems. Among them, 80% show microlensing of the broad emission lines. Focusing on the most common lines in our spectra (CIII] and MgII) we detect microlensing of either the blue or the red wing, or of both wings with the same amplitude. This observation implies that the broad line region is not in general spherically symmetric. In addition, the frequent detection of microlensing of the blue and red wings independently but not simultaneously with a different amplitude, does not support existing microlensing simulations of a biconical outflow. Our analysis also provides the intrinsic flux ratio between the lensed images and the magnitude of the microlensing affecting the continuum. These two quantities are particularly relevant for the determination of the fraction of matter in clumpy form in galaxies and for the detection of dark matter substructures via the identification of flux ratio anomalies.
Recent work has demonstrated the potential of gravitationally lensed quasars to extend measurements of black hole spin out to high-redshift with the current generation of X-ray observatories. Here we present an analysis of a large sample of 27 lensed quasars in the redshift range 1.0<z<4.5 observed with Chandra, utilizing over 1.6 Ms of total observing time, focusing on the rest-frame iron K emission from these sources. Although the X-ray signal-to-noise (S/N) currently available does not permit the detection of iron emission from the inner accretion disk in individual cases in our sample, we find significant structure in the stacked residuals. In addition to the narrow core, seen almost ubiquitously in local AGN, we find evidence for an additional underlying broad component from the inner accretion disk, with a clear red wing to the emission profile. Based on simulations, we find the detection of this broader component to be significant at greater than the 3-sigma level. This implies that iron emission from the inner disk is relatively common in the population of lensed quasars, and in turn further demonstrates that, with additional observations, this population represents an opportunity to significantly extend the sample of AGN spin measurements out to high-redshift.
Gravitational microlensing is a powerful tool for probing the inner structure of distant quasars. In this context, we have obtained spectropolarimetric observations of the two images of the broad absorption line (BAL) quasar SDSSJ081830.46+060138.0 ( J0818+0601) at redshift $z simeq$ 2.35. We first show that J0818+0601 is actually gravitationally lensed, and not a binary quasar. A strong absorption system detected at $z$ = 1.0065$pm$0.0002 is possibly due to the lensing galaxy. Microlensing is observed in one image and it magnifies the emission lines, the continuum, and the BALs differently. By disentangling the part of the spectrum that is microlensed from the part that is not microlensed, we unveil two sources of continuum that must be spatially separated: a compact one, which is microlensed, and an extended one, which is not microlensed and contributes to two thirds of the total continuum emission. J0818+0601 is the second BAL quasar in which an extended source of rest-frame ultraviolet continuum is found. We also find that the images are differently polarized, suggesting that the two continua might be differently polarized. Our analysis provides constraints on the BAL flow. In particular, we find that the outflow is seen with a nonzero onset velocity, and stratified according to ionization.
A method is proposed for measuring the size of the broad emission line region (BLR) in quasars using broadband photometric data. A feasibility study, based on numerical simulations, points to the advantages and pitfalls associated with this approach. The method is applied to a subset of the Palomar-Green quasar sample for which independent BLR size measurements are available. An agreement is found between the results of the photometric method and the spectroscopic reverberation mapping technique. Implications for the measurement of BLR sizes and black hole masses for numerous quasars in the era of large surveys are discussed.
We use single-epoch spectroscopy of three gravitationally lensed quasars, HE0435-1223, WFI2033-4723, and HE2149-2745, to study their inner structure (BLR and continuum source). We detect microlensing-induced magnification in the wings of the broad em ission lines of two of the systems (HE0435-1223 and WFI2033-4723). In the case of WFI2033-4723, microlensing affects two bumps in the spectra which are almost symmetrically arranged on the blue (coincident with an AlIII emission line) and red wings of CIII]. These match the typical double-peaked profile that follows from disk kinematics. The presence of microlensing in the wings of the emission lines indicates the existence of two different regions in the BLR: a relatively small one with kinematics possibly related to an accretion disk, and another one that is substantially more extended and insensitive to microlensing. There is good agreement between the estimated size of the region affected by microlensing in the emission lines, $r_s=10^{+15}_{-7} sqrt{M/M_{odot}}$ light-days (red wing of CIV in HE0435-1223) and $r_s=11^{+28}_{-7} sqrt{M/M_{odot}}$ light-days (CIII] bumps in WFI2033-4723) with the sizes inferred from the continuum emission, $r_s=13^{+5}_{-4} sqrt{M/M_{odot}}$ light-days (HE0435-1223) and $r_s=10^{+3}_{-2} sqrt{M/M_{odot}}$ light-days (WFI2033-4723). For HE2149-2745 we measure an accretion disk size $r_s=8^{+11}_{-5} sqrt{M/M_{odot}}$ light-days. The estimates of $p$, the exponent of the size vs. wavelength ($r_sproptolambda^p$), are $1.2pm0.6$, $0.8pm0.2$, and $0.4pm0.3$ for HE0435-1223, WFI2033-4723, and HE2149-2745, respectively. In conclusion, the continuum microlensing amplitude in the three quasars and chromaticity in WFI2033-4723 and HE2149-2745 are below expectations for the thin disk model. The disks are larger and their temperature gradients are flatter than predicted by this model.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا