ترغب بنشر مسار تعليمي؟ اضغط هنا

Federated Generative Adversarial Learning

291   0   0.0 ( 0 )
 نشر من قبل Chenyou Fan
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

This work studies training generative adversarial networks under the federated learning setting. Generative adversarial networks (GANs) have achieved advancement in various real-world applications, such as image editing, style transfer, scene generations, etc. However, like other deep learning models, GANs are also suffering from data limitation problems in real cases. To boost the performance of GANs in target tasks, collecting images as many as possible from different sources becomes not only important but also essential. For example, to build a robust and accurate bio-metric verification system, huge amounts of images might be collected from surveillance cameras, and/or uploaded from cellphones by users accepting agreements. In an ideal case, utilize all those data uploaded from public and private devices for model training is straightforward. Unfortunately, in the real scenarios, this is hard due to a few reasons. At first, some data face the serious concern of leakage, and therefore it is prohibitive to upload them to a third-party server for model training; at second, the images collected by different kinds of devices, probably have distinctive biases due to various factors, $textit{e.g.}$, collector preferences, geo-location differences, which is also known as domain shift. To handle those problems, we propose a novel generative learning scheme utilizing a federated learning framework. Following the configuration of federated learning, we conduct model training and aggregation on one center and a group of clients. Specifically, our method learns the distributed generative models in clients, while the models trained in each client are fused into one unified and versatile model in the center. We perform extensive experiments to compare different federation strategies, and empirically examine the effectiveness of federation under different levels of parallelism and data skewness.

قيم البحث

اقرأ أيضاً

149 - Chenyou Fan , Jianwei Huang 2021
We are interested in developing a unified machine learning model over many mobile devices for practical learning tasks, where each device only has very few training data. This is a commonly encountered situation in mobile computing scenarios, where d ata is scarce and distributed while the tasks are distinct. In this paper, we propose a federated few-shot learning (FedFSL) framework to learn a few-shot classification model that can classify unseen data classes with only a few labeled samples. With the federated learning strategy, FedFSL can utilize many data sources while keeping data privacy and communication efficiency. There are two technical challenges: 1) directly using the existing federated learning approach may lead to misaligned decision boundaries produced by client models, and 2) constraining the decision boundaries to be similar over clients would overfit to training tasks but not adapt well to unseen tasks. To address these issues, we propose to regularize local updates by minimizing the divergence of client models. We also formulate the training in an adversarial fashion and optimize the client models to produce a discriminative feature space that can better represent unseen data samples. We demonstrate the intuitions and conduct experiments to show our approaches outperform baselines by more than 10% in learning vision tasks and 5% in language tasks.
In this paper, we study the convergence of generative adversarial networks (GANs) from the perspective of the informativeness of the gradient of the optimal discriminative function. We show that GANs without restriction on the discriminative function space commonly suffer from the problem that the gradient produced by the discriminator is uninformative to guide the generator. By contrast, Wasserstein GAN (WGAN), where the discriminative function is restricted to 1-Lipschitz, does not suffer from such a gradient uninformativeness problem. We further show in the paper that the model with a compact dual form of Wasserstein distance, where the Lipschitz condition is relaxed, may also theoretically suffer from this issue. This implies the importance of Lipschitz condition and motivates us to study the general formulation of GANs with Lipschitz constraint, which leads to a new family of GANs that we call Lipschitz GANs (LGANs). We show that LGANs guarantee the existence and uniqueness of the optimal discriminative function as well as the existence of a unique Nash equilibrium. We prove that LGANs are generally capable of eliminating the gradient uninformativeness problem. According to our empirical analysis, LGANs are more stable and generate consistently higher quality samples compared with WGAN.
We propose a unified game-theoretical framework to perform classification and conditional image generation given limited supervision. It is formulated as a three-player minimax game consisting of a generator, a classifier and a discriminator, and the refore is referred to as Triple Generative Adversarial Network (Triple-GAN). The generator and the classifier characterize the conditional distributions between images and labels to perform conditional generation and classification, respectively. The discriminator solely focuses on identifying fake image-label pairs. Under a nonparametric assumption, we prove the unique equilibrium of the game is that the distributions characterized by the generator and the classifier converge to the data distribution. As a byproduct of the three-player mechanism, Triple-GAN is flexible to incorporate different semi-supervised classifiers and GAN architectures. We evaluate Triple-GAN in two challenging settings, namely, semi-supervised learning and the extreme low data regime. In both settings, Triple-GAN can achieve excellent classification results and generate meaningful samples in a specific class simultaneously. In particular, using a commonly adopted 13-layer CNN classifier, Triple-GAN outperforms extensive semi-supervised learning methods substantially on more than 10 benchmarks no matter data augmentation is applied or not.
Generative Adversarial Networks (GANs) based semi-supervised learning (SSL) approaches are shown to improve classification performance by utilizing a large number of unlabeled samples in conjunction with limited labeled samples. However, their perfor mance still lags behind the state-of-the-art non-GAN based SSL approaches. We identify that the main reason for this is the lack of consistency in class probability predictions on the same image under local perturbations. Following the general literature, we address this issue via label consistency regularization, which enforces the class probability predictions for an input image to be unchanged under various semantic-preserving perturbations. In this work, we introduce consistency regularization into the vanilla semi-GAN to address this critical limitation. In particular, we present a new composite consistency regularization method which, in spirit, leverages both local consistency and interpolation consistency. We demonstrate the efficacy of our approach on two SSL image classification benchmark datasets, SVHN and CIFAR-10. Our experiments show that this new composite consistency regularization based semi-GAN significantly improves its performance and achieves new state-of-the-art performance among GAN-based SSL approaches.
83 - Chenxin Xu , Rong Xia , Yong Xiao 2021
With the fast growing demand on new services and applications as well as the increasing awareness of data protection, traditional centralized traffic classification approaches are facing unprecedented challenges. This paper introduces a novel framewo rk, Federated Generative Adversarial Networks and Automatic Classification (FGAN-AC), which integrates decentralized data synthesizing with traffic classification. FGAN-AC is able to synthesize and classify multiple types of service data traffic from decentralized local datasets without requiring a large volume of manually labeled dataset or causing any data leakage. Two types of data synthesizing approaches have been proposed and compared: computation-efficient FGAN (FGAN-uppercaseexpandafter{romannumeral1}) and communication-efficient FGAN (FGAN-uppercaseexpandafter{romannumeral2}). The former only implements a single CNN model for processing each local dataset and the later only requires coordination of intermediate model training parameters. An automatic data classification and model updating framework has been proposed to automatically identify unknown traffic from the synthesized data samples and create new pseudo-labels for model training. Numerical results show that our proposed framework has the ability to synthesize highly mixed service data traffic and can significantly improve the traffic classification performance compared to existing solutions.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا