ترغب بنشر مسار تعليمي؟ اضغط هنا

Ensuring Fairness under Prior Probability Shifts

74   0   0.0 ( 0 )
 نشر من قبل Arpita Biswas
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we study the problem of fair classification in the presence of prior probability shifts, where the training set distribution differs from the test set. This phenomenon can be observed in the yearly records of several real-world datasets, such as recidivism records and medical expenditure surveys. If unaccounted for, such shifts can cause the predictions of a classifier to become unfair towards specific population subgroups. While the fairness notion called Proportional Equality (PE) accounts for such shifts, a procedure to ensure PE-fairness was unknown. In this work, we propose a method, called CAPE, which provides a comprehensive solution to the aforementioned problem. CAPE makes novel use of prevalence estimation techniques, sampling and an ensemble of classifiers to ensure fair predictions under prior probability shifts. We introduce a metric, called prevalence difference (PD), which CAPE attempts to minimize in order to ensure PE-fairness. We theoretically establish that this metric exhibits several desirable properties. We evaluate the efficacy of CAPE via a thorough empirical evaluation on synthetic datasets. We also compare the performance of CAPE with several popular fair classifiers on real-world datasets like COMPAS (criminal risk assessment) and MEPS (medical expenditure panel survey). The results indicate that CAPE ensures PE-fair predictions, while performing well on other performance metrics.

قيم البحث

اقرأ أيضاً

We initiate the study of fair classifiers that are robust to perturbations in the training distribution. Despite recent progress, the literature on fairness has largely ignored the design of fair and robust classifiers. In this work, we develop class ifiers that are fair not only with respect to the training distribution, but also for a class of distributions that are weighted perturbations of the training samples. We formulate a min-max objective function whose goal is to minimize a distributionally robust training loss, and at the same time, find a classifier that is fair with respect to a class of distributions. We first reduce this problem to finding a fair classifier that is robust with respect to the class of distributions. Based on online learning algorithm, we develop an iterative algorithm that provably converges to such a fair and robust solution. Experiments on standard machine learning fairness datasets suggest that, compared to the state-of-the-art fair classifiers, our classifier retains fairness guarantees and test accuracy for a large class of perturbations on the test set. Furthermore, our experiments show that there is an inherent trade-off between fairness robustness and accuracy of such classifiers.
In many application areas---lending, education, and online recommenders, for example---fairness and equity concerns emerge when a machine learning system interacts with a dynamically changing environment to produce both immediate and long-term effect s for individuals and demographic groups. We discuss causal directed acyclic graphs (DAGs) as a unifying framework for the recent literature on fairness in such dynamical systems. We show that this formulation affords several new directions of inquiry to the modeler, where causal assumptions can be expressed and manipulated. We emphasize the importance of computing interventional quantities in the dynamical fairness setting, and show how causal assumptions enable simulation (when environment dynamics are known) and off-policy estimation (when dynamics are unknown) of intervention on short- and long-term outcomes, at both the group and individual levels.
115 - Yongkai Wu , Lu Zhang , Xintao Wu 2018
Fairness-aware classification is receiving increasing attention in the machine learning fields. Recently research proposes to formulate the fairness-aware classification as constrained optimization problems. However, several limitations exist in prev ious works due to the lack of a theoretical framework for guiding the formulation. In this paper, we propose a general framework for learning fair classifiers which addresses previous limitations. The framework formulates various commonly-used fairness metrics as convex constraints that can be directly incorporated into classic classification models. Within the framework, we propose a constraint-free criterion on the training data which ensures that any classifier learned from the data is fair. We also derive the constraints which ensure that the real fairness metric is satisfied when surrogate functions are used to achieve convexity. Our framework can be used to for formulating fairness-aware classification with fairness guarantee and computational efficiency. The experiments using real-world datasets demonstrate our theoretical results and show the effectiveness of proposed framework and methods.
ML-based predictive systems are increasingly used to support decisions with a critical impact on individuals lives such as college admission, job hiring, child custody, criminal risk assessment, etc. As a result, fairness emerged as an important requ irement to guarantee that predictive systems do not discriminate against specific individuals or entire sub-populations, in particular, minorities. Given the inherent subjectivity of viewing the concept of fairness, several notions of fairness have been introduced in the literature. This paper is a survey of fairness notions that, unlike other surveys in the literature, addresses the question of which notion of fairness is most suited to a given real-world scenario and why?. Our attempt to answer this question consists in (1) identifying the set of fairness-related characteristics of the real-world scenario at hand, (2) analyzing the behavior of each fairness notion, and then (3) fitting these two elements to recommend the most suitable fairness notion in every specific setup. The results are summarized in a decision diagram that can be used by practitioners and policy makers to navigate the relatively large catalogue of fairness notions.
104 - Bing Sun , Jun Sun , Ting Dai 2021
Fairness is crucial for neural networks which are used in applications with important societal implication. Recently, there have been multiple attempts on improving fairness of neural networks, with a focus on fairness testing (e.g., generating indiv idual discriminatory instances) and fairness training (e.g., enhancing fairness through augmented training). In this work, we propose an approach to formally verify neural networks against fairness, with a focus on independence-based fairness such as group fairness. Our method is built upon an approach for learning Markov Chains from a user-provided neural network (i.e., a feed-forward neural network or a recurrent neural network) which is guaranteed to facilitate sound analysis. The learned Markov Chain not only allows us to verify (with Probably Approximate Correctness guarantee) whether the neural network is fair or not, but also facilities sensitivity analysis which helps to understand why fairness is violated. We demonstrate that with our analysis results, the neural weights can be optimized to improve fairness. Our approach has been evaluated with multiple models trained on benchmark datasets and the experiment results show that our approach is effective and efficient.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا