ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum correlation alignment for unsupervised domain adaptation

83   0   0.0 ( 0 )
 نشر من قبل Xi He
 تاريخ النشر 2020
والبحث باللغة English
 تأليف Xi He




اسأل ChatGPT حول البحث

Correlation alignment (CORAL), a representative domain adaptation (DA) algorithm, decorrelates and aligns a labelled source domain dataset to an unlabelled target domain dataset to minimize the domain shift such that a classifier can be applied to predict the target domain labels. In this paper, we implement the CORAL on quantum devices by two different methods. One method utilizes quantum basic linear algebra subroutines (QBLAS) to implement the CORAL with exponential speedup in the number and dimension of the given data samples. The other method is achieved through a variational hybrid quantum-classical procedure. In addition, the numerical experiments of the CORAL with three different types of data sets, namely the synthetic data, the synthetic-Iris data, the handwritten digit data, are presented to evaluate the performance of our work. The simulation results prove that the variational quantum correlation alignment algorithm (VQCORAL) can achieve competitive performance compared with the classical CORAL.



قيم البحث

اقرأ أيضاً

A novel approach for unsupervised domain adaptation for neural networks is proposed. It relies on metric-based regularization of the learning process. The metric-based regularization aims at domain-invariant latent feature representations by means of maximizing the similarity between domain-specific activation distributions. The proposed metric results from modifying an integral probability metric such that it becomes less translation-sensitive on a polynomial function space. The metric has an intuitive interpretation in the dual space as the sum of differences of higher order central moments of the corresponding activation distributions. Under appropriate assumptions on the input distributions, error minimization is proven for the continuous case. As demonstrated by an analysis of standard benchmark experiments for sentiment analysis, object recognition and digit recognition, the outlined approach is robust regarding parameter changes and achieves higher classification accuracies than comparable approaches. The source code is available at https://github.com/wzell/mann.
Deep neural networks, trained with large amount of labeled data, can fail to generalize well when tested with examples from a emph{target domain} whose distribution differs from the training data distribution, referred as the emph{source domain}. It can be expensive or even infeasible to obtain required amount of labeled data in all possible domains. Unsupervised domain adaptation sets out to address this problem, aiming to learn a good predictive model for the target domain using labeled examples from the source domain but only unlabeled examples from the target domain. Domain alignment approaches this problem by matching the source and target feature distributions, and has been used as a key component in many state-of-the-art domain adaptation methods. However, matching the marginal feature distributions does not guarantee that the corresponding class conditional distributions will be aligned across the two domains. We propose co-regularized domain alignment for unsupervised domain adaptation, which constructs multiple diverse feature spaces and aligns source and target distributions in each of them individually, while encouraging that alignments agree with each other with regard to the class predictions on the unlabeled target examples. The proposed method is generic and can be used to improve any domain adaptation method which uses domain alignment. We instantiate it in the context of a recent state-of-the-art method and observe that it provides significant performance improvements on several domain adaptation benchmarks.
Unsupervised domain adaptive classification intends to improve theclassification performance on unlabeled target domain. To alleviate the adverse effect of domain shift, many approaches align the source and target domains in the feature space. Howeve r, a feature is usually taken as a whole for alignment without explicitly making domain alignment proactively serve the classification task, leading to sub-optimal solution. What sub-feature should be aligned for better adaptation is under-explored. In this paper, we propose an effective Task-oriented Alignment (ToAlign) for unsupervised domain adaptation (UDA). We study what features should be aligned across domains and propose to make the domain alignment proactively serve classification by performing feature decomposition and alignment under the guidance of the prior knowledge induced from the classification taskitself. Particularly, we explicitly decompose a feature in the source domain intoa task-related/discriminative feature that should be aligned, and a task-irrelevant feature that should be avoided/ignored, based on the classification meta-knowledge. Extensive experimental results on various benchmarks (e.g., Office-Home, Visda-2017, and DomainNet) under different domain adaptation settings demonstrate theeffectiveness of ToAlign which helps achieve the state-of-the-art performance.
135 - Zhijie Deng , Yucen Luo , Jun Zhu 2019
Deep learning methods have shown promise in unsupervised domain adaptation, which aims to leverage a labeled source domain to learn a classifier for the unlabeled target domain with a different distribution. However, such methods typically learn a do main-invariant representation space to match the marginal distributions of the source and target domains, while ignoring their fine-level structures. In this paper, we propose Cluster Alignment with a Teacher (CAT) for unsupervised domain adaptation, which can effectively incorporate the discriminative clustering structures in both domains for better adaptation. Technically, CAT leverages an implicit ensembling teacher model to reliably discover the class-conditional structure in the feature space for the unlabeled target domain. Then CAT forces the features of both the source and the target domains to form discriminative class-conditional clusters and aligns the corresponding clusters across domains. Empirical results demonstrate that CAT achieves state-of-the-art results in several unsupervised domain adaptation scenarios.
135 - Weikai Li , Songcan Chen 2021
Unsupervised domain adaptation (UDA) aims to transfer knowledge from a well-labeled source domain to a different but related unlabeled target domain with identical label space. Currently, the main workhorse for solving UDA is domain alignment, which has proven successful. However, it is often difficult to find an appropriate source domain with identical label space. A more practical scenario is so-called partial domain adaptation (PDA) in which the source label set or space subsumes the target one. Unfortunately, in PDA, due to the existence of the irrelevant categories in the source domain, it is quite hard to obtain a perfect alignment, thus resulting in mode collapse and negative transfer. Although several efforts have been made by down-weighting the irrelevant source categories, the strategies used tend to be burdensome and risky since exactly which irrelevant categories are unknown. These challenges motivate us to find a relatively simpler alternative to solve PDA. To achieve this, we first provide a thorough theoretical analysis, which illustrates that the target risk is bounded by both model smoothness and between-domain discrepancy. Considering the difficulty of perfect alignment in solving PDA, we turn to focus on the model smoothness while discard the riskier domain alignment to enhance the adaptability of the model. Specifically, we instantiate the model smoothness as a quite simple intra-domain structure preserving (IDSP). To our best knowledge, this is the first naive attempt to address the PDA without domain alignment. Finally, our empirical results on multiple benchmark datasets demonstrate that IDSP is not only superior to the PDA SOTAs by a significant margin on some benchmarks (e.g., +10% on Cl->Rw and +8% on Ar->Rw ), but also complementary to domain alignment in the standard UDA

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا