ترغب بنشر مسار تعليمي؟ اضغط هنا

Detecting Latent Communities in Network Formation Models

92   0   0.0 ( 0 )
 نشر من قبل Yichong Zhang
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper proposes a logistic undirected network formation model which allows for assortative matching on observed individual characteristics and the presence of edge-wise fixed effects. We model the coefficients of observed characteristics to have a latent community structure and the edge-wise fixed effects to be of low rank. We propose a multi-step estimation procedure involving nuclear norm regularization, sample splitting, iterative logistic regression and spectral clustering to detect the latent communities. We show that the latent communities can be exactly recovered when the expected degree of the network is of order log n or higher, where n is the number of nodes in the network. The finite sample performance of the new estimation and inference methods is illustrated through both simulated and real datasets.



قيم البحث

اقرأ أيضاً

Latent position network models are a versatile tool in network science; applications include clustering entities, controlling for causal confounders, and defining priors over unobserved graphs. Estimating each nodes latent position is typically frame d as a Bayesian inference problem, with Metropolis within Gibbs being the most popular tool for approximating the posterior distribution. However, it is well-known that Metropolis within Gibbs is inefficient for large networks; the acceptance ratios are expensive to compute, and the resultant posterior draws are highly correlated. In this article, we propose an alternative Markov chain Monte Carlo strategy---defined using a combination of split Hamiltonian Monte Carlo and Firefly Monte Carlo---that leverages the posterior distributions functional form for more efficient posterior computation. We demonstrate that these strategies outperform Metropolis within Gibbs and other algorithms on synthetic networks, as well as on real information-sharing networks of teachers and staff in a school district.
In nonseparable triangular models with a binary endogenous treatment and a binary instrumental variable, Vuong and Xu (2017) show that the individual treatment effects (ITEs) are identifiable. Feng, Vuong and Xu (2019) show that a kernel density esti mator that uses nonparametrically estimated ITEs as observations is uniformly consistent for the density of the ITE. In this paper, we establish the asymptotic normality of the density estimator of Feng, Vuong and Xu (2019) and show that despite their faster rate of convergence, ITEs estimation errors have a non-negligible effect on the asymptotic distribution of the density estimator. We propose asymptotically valid standard errors for the density of the ITE that account for estimated ITEs as well as bias correction. Furthermore, we develop uniform confidence bands for the density of the ITE using nonparametric or jackknife multiplier bootstrap critical values. Our uniform confidence bands have correct coverage probabilities asymptotically with polynomial error rates and can be used for inference on the shape of the ITEs distribution.
We develop a new approach for estimating average treatment effects in the observational studies with unobserved group-level heterogeneity. A common approach in such settings is to use linear fixed effect specifications estimated by least squares regr ession. Such methods severely limit the extent of the heterogeneity between groups by making the restrictive assumption that linearly adjusting for differences between groups in average covariate values addresses all concerns with cross-group comparisons. We start by making two observations. First we note that the fixed effect method in effect adjusts only for differences between groups by adjusting for the average of covariate values and average treatment. Second, we note that weighting by the inverse of the propensity score would remove biases for comparisons between treated and control units under the fixed effect set up. We then develop three generalizations of the fixed effect approach based on these two observations. First, we suggest more general, nonlinear, adjustments for the average covariate values. Second, we suggest robustifying the estimators by using propensity score weighting. Third, we motivate and develop implementations for adjustments that also adjust for group characteristics beyond the average covariate values.
The Pareto model is very popular in risk management, since simple analytical formulas can be derived for financial downside risk measures (Value-at-Risk, Expected Shortfall) or reinsurance premiums and related quantities (Large Claim Index, Return Pe riod). Nevertheless, in practice, distributions are (strictly) Pareto only in the tails, above (possible very) large threshold. Therefore, it could be interesting to take into account second order behavior to provide a better fit. In this article, we present how to go from a strict Pareto model to Pareto-type distributions. We discuss inference, and derive formulas for various measures and indices, and finally provide applications on insurance losses and financial risks.
Factor and sparse models are two widely used methods to impose a low-dimensional structure in high-dimension. They are seemingly mutually exclusive. We propose a lifting method that combines the merits of these two models in a supervised learning met hodology that allows to efficiently explore all the information in high-dimensional datasets. The method is based on a flexible model for high-dimensional panel data, called factor-augmented regression (FarmPredict) model with both observable or latent common factors, as well as idiosyncratic components. This model not only includes both principal component (factor) regression and sparse regression as specific models but also significantly weakens the cross-sectional dependence and hence facilitates model selection and interpretability. The methodology consists of three steps. At each step, the remaining cross-section dependence can be inferred by a novel test for covariance structure in high-dimensions. We developed asymptotic theory for the FarmPredict model and demonstrated the validity of the multiplier bootstrap for testing high-dimensional covariance structure. This is further extended to testing high-dimensional partial covariance structures. The theory is supported by a simulation study and applications to the construction of a partial covariance network of the financial returns and a prediction exercise for a large panel of macroeconomic time series from FRED-MD database.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا