ﻻ يوجد ملخص باللغة العربية
We introduce a variant of PCPs, that we refer to as rectangular PCPs, wherein proofs are thought of as square matrices, and the random coins used by the verifier can be partitioned into two disjoint sets, one determining the row of each query and the other determining the column. We construct PCPs that are efficient, short, smooth and (almost-)rectangular. As a key application, we show that proofs for hard languages in $NTIME(2^n)$, when viewed as matrices, are rigid infinitely often. This strengthens and simplifies a recent result of Alman and Chen [FOCS, 2019] constructing explicit rigid matrices in FNP. Namely, we prove the following theorem: - There is a constant $delta in (0,1)$ such that there is an FNP-machine that, for infinitely many $N$, on input $1^N$ outputs $N times N$ matrices with entries in $mathbb{F}_2$ that are $delta N^2$-far (in Hamming distance) from matrices of rank at most $2^{log N/Omega(log log N)}$. Our construction of rectangular PCPs starts with an analysis of how randomness yields queries in the Reed--Muller-based outer PCP of Ben-Sasson, Goldreich, Harsha, Sudan and Vadhan [SICOMP, 2006; CCC, 2005]. We then show how to preserve rectangularity under PCP composition and a smoothness-inducing transformation. This warrants refined and stronger notions of rectangularity, which we prove for the outer PCP and its transforms.
We study the singularity probability of random integer matrices. Concretely, the probability that a random $n times n$ matrix, with integer entries chosen uniformly from ${-m,ldots,m}$, is singular. This problem has been well studied in two regimes:
These are the lecture notes for the DIMACS Tutorial Limits of Approximation Algorithms: PCPs and Unique Games held at the DIMACS Center, CoRE Building, Rutgers University on 20-21 July, 2009. This tutorial was jointly sponsored by the DIMACS Special
We construct an explicit family of 3XOR instances which is hard for $O(sqrt{log n})$ levels of the Sum-of-Squares hierarchy. In contrast to earlier constructions, which involve a random component, our systems can be constructed explicitly in determin
The spectral problem for matrices with a block-hierarchical structure is often considered in context of the theory of complex systems. In the present article, a new class of matrices with a block-rectangular non-symmetric hierarchical structure is in
A compound determinant identity for minors of rectangular matrices is established. As an application, we derive Vandermonde type determinant formulae for classical group characters.