ترغب بنشر مسار تعليمي؟ اضغط هنا

Cellular-Enabled UAV Communication: A Connectivity-Constrained Trajectory Optimization Perspective

203   0   0.0 ( 0 )
 نشر من قبل Shuowen Zhang
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Integrating the unmanned aerial vehicles (UAVs) into the cellular network is envisioned to be a promising technology to significantly enhance the communication performance of both UAVs and existing terrestrial users. In this paper, we first provide an overview on the two main paradigms in cellular UAV communications, i.e., cellular-enabled UAV communication with UAVs as new aerial users served by the ground base stations (GBSs), and UAV-assisted cellular communication with UAVs as new aerial communication platforms serving the terrestrial users. Then, we focus on the former paradigm and study a new UAV trajectory design problem subject to practical communication connectivity constraints with the GBSs. Specifically, we consider a cellular-connected UAV in the mission of flying from an initial location to a final location, during which it needs to maintain reliable communication with the cellular network by associating with one GBS at each time instant. We aim to minimize the UAVs mission completion time by optimizing its trajectory, subject to a quality-of-connectivity constraint of the GBS-UAV link specified by a minimum receive signal-to-noise ratio target. To tackle this challenging non-convex problem, we first propose a graph connectivity based method to verify its feasibility. Next, by examining the GBS-UAV association sequence over time, we obtain useful structural results on the optimal UAV trajectory, based on which two efficient methods are proposed to find high-quality approximate trajectory solutions by leveraging graph theory and convex optimization techniques. The proposed methods are analytically shown to be capable of achieving a flexible trade-off between complexity and performance, and yielding a solution that is arbitrarily close to the optimal solution in polynomial time. Finally, we make concluding remarks and point out some promising directions for future work.



قيم البحث

اقرأ أيضاً

In this paper, we study a cellular-enabled unmanned aerial vehicle (UAV) communication system consisting of one UAV and multiple ground base stations (GBSs). The UAV has a mission of flying from an initial location to a final location, during which i t needs to maintain reliable wireless connection with the cellular network by associating with one of the GBSs at each time instant. We aim to minimize the UAV mission completion time by optimizing its trajectory, subject to a quality of connectivity constraint of the GBS-UAV link specified by a minimum received signal-to-noise ratio (SNR) target, which needs to be satisfied throughout the mission. This problem is non-convex and difficult to be optimally solved. We first propose an effective approach to check its feasibility based on graph connectivity verification. Then, by examining the GBS-UAV association sequence during the UAV mission, we obtain useful insights on the optimal UAV trajectory, based on which an efficient algorithm is proposed to find an approximate solution to the trajectory optimization problem by leveraging techniques in convex optimization and graph theory. Numerical results show that our proposed trajectory design achieves near-optimal performance.
304 - Shuowen Zhang , Rui Zhang 2019
In this paper, we study the trajectory design for a cellular-connected unmanned aerial vehicle (UAV) with given initial and final locations, while communicating with the ground base stations (GBSs) along its flight. We consider delay-limited communic ations between the UAV and its associated GBSs, where a given signal-to-noise ratio (SNR) target needs to be satisfied at the receiver. However, in practice, due to various factors such as quality-of-service (QoS) requirement, GBSs availability and UAV mobility constraints, the SNR target may not be met at certain time periods during the flight, each termed as an outage duration. In this paper, we aim to optimize the UAV trajectory to minimize its mission completion time, subject to a constraint on the maximum tolerable outage duration in its flight. To tackle this non-convex problem, we first transform it into a more tractable form and thereby reveal some useful properties of the optimal trajectory solution. Based on these properties, we then further simplify the problem and propose efficient algorithms to check the feasibility of the problem as well as to obtain its optimal and high-quality suboptimal solutions, by leveraging graph theory and convex optimization techniques. Numerical results show that our proposed trajectory designs outperform the conventional method based on dynamic programming, in terms of both performance and complexity.
321 - Yong Zeng , Rui Zhang 2016
Wireless communication with unmanned aerial vehicles (UAVs) is a promising technology for future communication systems. In this paper, we study energy-efficient UAV communication with a ground terminal via optimizing the UAVs trajectory, a new design paradigm that jointly considers both the communication throughput and the UAVs energy consumption. To this end, we first derive a theoretical model on the propulsion energy consumption of fixed-wing UAVs as a function of the UAVs flying speed, direction and acceleration, based on which the energy efficiency of UAV communication is defined. Then, for the case of unconstrained trajectory optimization, we show that both the rate-maximization and energy-minimization designs lead to vanishing energy efficiency and thus are energy-inefficient in general. Next, we introduce a practical circular UAV trajectory, under which the UAVs flight radius and speed are optimized to maximize the energy efficiency for communication. Furthermore, an efficient design is proposed for maximizing the UAVs energy efficiency with general constraints on its trajectory, including its initial/final locations and velocities, as well as maximum speed and acceleration. Numerical results show that the proposed designs achieve significantly higher energy efficiency for UAV communication as compared with other benchmark schemes.
Cognitive radio is a promising technology to improve spectral efficiency. However, the secure performance of a secondary network achieved by using physical layer security techniques is limited by its transmit power and channel fading. In order to tac kle this issue, a cognitive unmanned aerial vehicle (UAV) communication network is studied by exploiting the high flexibility of a UAV and the possibility of establishing line-of-sight links. The average secrecy rate of the secondary network is maximized by robustly optimizing the UAVs trajectory and transmit power. Our problem formulation takes into account two practical inaccurate location estimation cases, namely, the worst case and the outage-constrained case. In order to solve those challenging non-convex problems, an iterative algorithm based on $mathcal{S}$-Procedure is proposed for the worst case while an iterative algorithm based on Bernstein-type inequalities is proposed for the outage-constrained case. The proposed algorithms can obtain effective suboptimal solutions of the corresponding problems. Our simulation results demonstrate that the algorithm under the outage-constrained case can achieve a higher average secrecy rate with a low computational complexity compared to that of the algorithm under the worst case. Moreover, the proposed schemes can improve the secure communication performance significantly compared to other benchmark schemes.
129 - Yong Zeng , Xiaoli Xu , 2017
This paper studies an unmanned aerial vehicle (UAV)-enabled multicasting system, where a UAV is dispatched to disseminate a common file to a number of geographically distributed ground terminals (GTs). Our objective is to design the UAV trajectory to minimize its mission completion time, while ensuring that each GT is able to successfully recover the file with a high probability required. We consider the use of practical random linear network coding (RLNC) for UAV multicasting, so that each GT is able to recover the file as long as it receives a sufficiently large number of coded packets. However, the formulated UAV trajectory optimization problem is non-convex and difficult to be directly solved. To tackle this issue, we first derive an analytical lower bound for the success probability of each GTs file recovery. Based on this result, we then reformulate the problem into a more tractable form, where the UAV trajectory only needs to be designed to meet a set of constraints each on the minimum connection time with a GT, during which their distance is below a designed threshold. We show that the optimal UAV trajectory only needs to constitute connected line segments, thus it can be obtained by determining first the optimal set of waypoints and then UAV speed along the lines connecting the waypoints. We propose practical schemes for the waypoints design based on a novel concept of virtual base station (VBS) placement and by applying convex optimization techniques. Furthermore, for given set of waypoints, we obtain the optimal UAV speed over the resulting path efficiently by solving a linear programming (LP) problem. Numerical results show that the proposed UAV-enabled multicasting with optimized trajectory design achieves significant performance gains as compared to benchmark schemes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا