ﻻ يوجد ملخص باللغة العربية
In this paper we study up to which extent we can apply adiabatic control strategies to a quantum control model obtained by rotating wave approximation. In particular, we show that, under suitable assumptions on the asymptotic regime between the parameters characterizing the rotating wave and the adiabatic approximations, the induced flow converges to the one obtained by considering the two approximations separately and by combining them formally in cascade. As a consequence, we propose explicit control laws which can be used to induce desired populations transfers, robustly with respect to parameter dispersions in the controlled Hamiltonian.
In this paper, we discuss the compatibility between the rotating-wave and the adiabatic approximations for controlled quantum systems. Although the paper focuses on applications to two-level quantum systems, the main results apply in higher dimension
We study the synthesis of optimal control policies for large-scale multi-agent systems. The optimal control design induces a parsimonious control intervention by means of l-1, sparsity-promoting control penalizations. We study instantaneous and infin
A microscopic derivation of the master equation for the Jaynes-Cummings model with cavity losses is given, taking into account the terms in the dissipator which vary with frequencies of the order of the vacuum Rabi frequency. Our approach allows to
In this paper, we show the following: the Hausdorff dimension of the spectrum of period-doubling Hamiltonian is bigger than $log alpha/log 4$, where $alpha$ is the Golden number; there exists a dense uncountable subset of the spectrum such that for e
We provide an in-depth and thorough treatment of the validity of the rotating-wave approximation (RWA) in an open quantum system. We find that when it is introduced after tracing out the environment, all timescales of the open system are correctly re